RP Infrastructure

Stage 1 and Stage 2 Site Contamination Assessment

Tamworth Health Service Redevelopment: Carpark B Works

Dean Street, Tamworth

Report No. RGS32576.1-AO Rev.1 22 February 2023

Manning-Great Lakes
Port Macquarie
Coffs Harbour

RGS32576.1-AO Rev.1

22 February 2023

RP Infrastructure Level 19, 9 Hunter Street SYDNEY NSW 2300

Attention: Yonis Ahmad

Dear Yonis

RE: Tamworth Health Service Redevelopment: Carpark B Works – Dean Street, Tamworth Stage 1 and Stage 2 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 1 and Stage 2 site contamination assessment for the proposed upgrade of Carpark B that is located within Tamworth Hospital at Dean Street, Tamworth NSW.

The assessment found that Carpark B is suitable for the proposed development in its current state.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by Reviewed by

Louis Davidson Andrew Hills

Senior Geotechnical Engineer Senior Environmental Engineer

Table of Contents

1 INTRODUCTION		
1.1	Background	1
1.2	Objectives	2
1.3	Scope of Works	2
1.4	Site Identification	2
SITE I	DESCRIPTION	3
2.1	Topography and Drainage	3
2.2	Geology	4
2.3	Hydrogeology	4
2.4	Site History	
2.4.1	Historical Aerial Photography	!
3.1		
3.2		
321		
	·	
	·	
		17
	1.1 1.2 1.3 1.4 SITE I 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 3.1 3.2 3.2.1 3.3 GUIL QUA RESU 6.1.1 6.1.2 6.2 6.2.1 6.2.2 6.3 6.4	1.1 Background 1.2 Objectives 1.3 Scope of Works 1.4 Site Identification SITE DESCRIPTION 2.1 Topography and Drainage 2.2 Geology 2.3 Hydrogeology 2.4 Site History 2.4.1 Historical Aerial Photography 2.4.2 Site Observations 2.4.3 NSW EPA Records 2.4.4 Land Title Search 2.4.5 Site History Summary FIELD AND LABORATORY INVESTIGATIONS 3.1 Sampling Plan 3.2 Field Work 3.2.1 Laboratory Analysis 3.3 Data Quality Objectives GUIDELINES AND ASSESSMENT CRITERIA QUALITY ASSURANCE / QUALITY CONTROL RESULTS 6.1.1 Subsurface Conditions 6.1.2 Laboratory Results 6.2 Conceptual Site Model 6.2.1 Potential Sources of Contamination 6.2.2 Potential Exposure Pathways and Receptors 6.3 Discussion 6.4 Conclusions and Recommendations

Figures

Figure 1 Site Location Plan

Figure 2 Site Layout Plan

Figure 3 Sample Location Plan

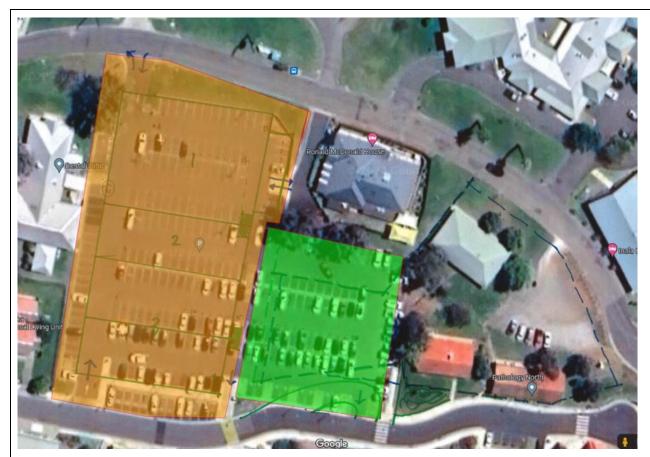
Appendices

Appendix A Site History Documentation

Appendix B Results of Field Investigations

Appendix C Laboratory Test Result Sheets

Appendix D Letter from Dr David Tully CEnvP SC



1 INTRODUCTION

1.1 Background

Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken Stage 1 and Stage 2 Site Contamination Assessments (SCA) for the upgrades proposed within the existing Carpark B that is located within Tamworth Hospital at Dean Street, Tamworth NSW.

RGS has previously undertaken geotechnical and site contamination works for the A2 Banksia Unit development that is located directly to the east of Carpark B. It is understood that the large sealed carpark to the west of this area is to be developed which will include the construction of a clinic floor over the eastern portion. Details of the proposed structures are not available at this stage. The proposed development area is illustrated below.

Diagram 1: Proposed development over existing sealed carpark. The proposed clinic floor is shaded green. The area shaded orange was also assessed for possible future developments.

The hospital site is identified as Lot 1 DP 1181268 and occupies approximately 20 hectares. The subject portion of the site which is to be redeveloped is located at the northern end of the facility and occupies approximately 7,500m². The layout of the subject area is illustrated above and in the attached figures.

The Stage 1 and Stage 2 site contamination assessment is required to evaluate past and present potentially contaminating activities and contamination types and to assess the site's suitability for the proposed development from a contamination perspective.

1.2 Objectives

The objectives of the SCA were to:

- Characterise the nature and extent of soil contamination present on the site (if any);
- Assess the suitability of the site for the proposed development; and
- Provide recommendations for on-site management, the need and options for remediation and any further investigation and testing that is required.

1.3 Scope of Works

In accordance with the relevant sections of the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- A brief study of site history, with the aim of identifying past activities on or near the site that might have the potential to cause contamination;
- Review of available recent and historical aerial photography for the last 50 years;
- A search of NSW EPA records, or contaminated land notifications on the site;
- Government records of groundwater bores in the area;
- Site walkover to assess visible surface conditions and identify any evidence of contamination, or past activities that may cause contamination;
- Using the above information, characterise the site into Areas of Environmental Concern, in which the potential for contamination has been identified, and nominate Chemicals of Concern that might be associated with those activities;
- Undertake targeted sampling and analysis at the selected Areas of Concern to evaluate the presence and extent of contamination (if any);
- Analyse samples for a suite of potential contaminants associated with the past activities;
 and
- Evaluate the results against industry accepted criteria for residential land use with minimal
 opportunities for soil access (Residential B land use guideline criteria have been adopted for
 this assessment as a conservative measure).

1.4 Site Identification

General site information is provided below in Table 1. The site location is shown in Figure 1.

Table 1: Summary of Site Details

Site location:	Dean Street, Tamworth	
Approximate site area:	20 Hectares (total site) 7,500m² (proposed redevelopment portion, i.e., Carpark B)	
Title Identification Details:	Lot 1 DP 1181268	
Current Ownership:	Health Administration Corporation	
Current Landuse:	Healthcare facility (hospital)	
Proposed Landuse:	Ongoing healthcare facility	
Adjoining Site Uses:	Within hospital: North, Aged Care Assessment Team Northeast, Ronald McDonald House accommodation East, staff accommodation, to be redeveloped as A2 Banksia Mental Health Unit South, rehabilitation ward West, dental clinic Surrounding area: Vacant land to the north South of Johnston Street, Tamwell Medical Centre and residential properties East of Smith Street, vacant land/carparks West of Dean Street, Tamworth Correctional	
Government Area:	Tamworth Regional Council	

2 SITE DESCRIPTION

2.1 Topography and Drainage

The site is located within Tamworth Hospital, off Dean Street, Tamworth.

The site is located within undulating residual topography on the mid-slope of a south facing hill. The surrounding slopes generally grades at about 5° to 8°.

The proposed development area is within the existing Carpark B, that comprises an asphalt wearing surface. The carpark has been cut into the slope. There are brick retaining walls running along the northern and eastern carpark boundaries. The carpark is graded to the west.

2.2 Geology

Reference to the 1:250,000 Geology Map of Tamworth indicates that the subject site is underlain by the Moore Creek Limestone Member that comprises cherty argillite, limestone, greywacke, and mudstone.

The materials encountered during the investigation are summarised below. Further details are presented on the attached engineering logs (Appendix B).

Wearing Surface: Asphalt, 30mm to 80mm; overlying

Fill: Pavement: Sandy Clayey GRAVEL, fine to medium grained, fine to medium grained sand, angular gravel to depths ranging from 0.1m to 0.5m; overlying

Colluvial Soil: CLAY and Gravelly CLAY, medium plasticity, fine to medium grained angular gravel, very stiff to hard; or

Residual Soil: CLAY and Gravelly CLAY, medium plasticity, fine to medium grained angular gravel, very stiff to hard.


The residual soil graded into weathered siltstone from depths ranging from 0.1m to 8.7m.

2.3 Hydrogeology

A groundwater bore search on the NSW Water Information website, http://waterinfo.nsw.gov.au/gw/ indicates there is a licenced groundwater bore (GW057928) located within the hospital approximately 230m south of Carpark B. The drill records indicate a water bearing zone of 26.2m to 26.5m. There is an additional bore (GW052834) located to the west that recorded a water bearing zone of 24.5m to 34m. The bore locations are shown on Diagram 2 below.

Based on RGS' experience in the region, regional groundwater depth in this area is typically about 10m below ground surface. However, perched water tables resulting from recent rainfall events within the upper 5m profile may be expected.

Diagram 2: Licensed groundwater bores located within the hospital complex to the south of Carpark B and to the west of the hospital.

2.4 Site History

2.4.1 Historical Aerial Photography

Available aerial photographs of the site were reviewed to assist in identifying past land uses that may contribute to site contamination. The results of the review are summarised in Table 2.

Table 2 - Aerial Photograph Summary

Year	Site	Surrounding Land
1976	The hospital site has been developed with some buildings similar to the existing hospital layout. The subject area is occupied by some buildings and vacant land.	Land surrounding the hospital is occupied by residential developments to the south and west. Vacant to the north and east.

1984	The western portion of the existing carpark has been constructed. The eastern portion is occupied by one building and vegetated with scattered trees.	Additional/upgrades to hospital buildings have been undertaken. Surrounding area is similar to the previous photograph.
1989	Extension to the carpark in the northeast corner.	Minor upgrades to hospital roads and buildings, and increased vegetation. Surrounding area is similar to the previous photograph.
2013 (Google Earth)	The carpark is sealed and extended to the north, a northern and southern entrance has been constructed.	The Ronald McDonald House has been constructed directly northeast of the carpark. The area to the southeast has been cleared for the construction of the Emergency Department building. Continued residential developments to the south and west of the hospital. Carpark and other earthworks undertaken to the east.
2015 (Google Earth)	Carpark is similar to the previous photograph.	The roads leading to the northern and southern entrances of the carpark have been upgraded and sealed. The Emergency Department building has been completed. Area surrounding the hospital is simar to the previous photograph.
February 2016 (Google Earth)	Buildings in the eastern portion of the existing carpark have been demolished and the area has been cleared in preparation of the eastern carpark extension.	Similar to the previous.
October 2016 (Google Earth)	Eastern portion of the carpark has been constructed in same layout to the existing.	Similar to the previous.
2022 (Google Earth)	Similar to the previous.	Similar to the previous.

2.4.2 Site Observations

Field work was undertaken on 20 and 21 August 2022. Observations from a contamination perspective made during the site visit are summarised below:

- The subject portion of the site is mainly covered by an asphalt wearing surface. There are minor garden beds vegetated with grass running along the northern boundary, and through the central portion of the carpark;
- Concrete curb and gutter are present around the boundary of the carpark;
- No other visual (such as oil staining) or olfactory evidence of contamination was observed.

A selection of images of the site is presented below.

Retaining wall and grassed garden bed running along the northern boundary.

Looking east over the northern portion of the existing carpark.

Looking west over the northern portion of the existing carpark.

Looking east over the southeast portion of the existing carpark. The Ronald McDonald House is on the left.

Looking south at the southeast exit of the existing carpark. The Emergency Department building is in the background.

Looking west over the southern portion of the existing carpark.

2.4.3 NSW EPA Records

A check with the NSW Office of Environment and Heritage website (www.environment.nsw.gov.au) revealed that no notices have been issued on the site under the Contaminated Land Management Act (1997).

2.4.4 Land Title Search

A list of past registered proprietors and trustees of the site was obtained from the Land Titles Office. A summary of the title details is included in Appendix A.

The title history search revealed the following:

1882 – 1931	Philip Gidley King	
	David Williamson Irvine	
	Nathan Cohen	
	Daniel Regan	
	Thomas Matthew Newman	
	(Trustees of Public Hospital Tamworth)	
1931 – 1931	Thomas Matthew Newman	
	(Trustee of Public Hospital Tamworth)	
1931 – 1991	The Tamworth District Hospital	
1991 – 1998	The Tamworth Base Hospital	

1998 – 2013	New England Health Services
	(Formerly The Tamworth Base Hospital)
2013 – to date	Health Administration Corporation

2.4.5 Site History Summary

Based on available data the chronological development of the site is summarised below:

- The land has been owed by the hospital or trustees of the hospital since 1882;
- The general layout of the hospital and some of the existing hospital buildings were constructed prior to 1976;
- The western portion of the existing Carpark B started being used as a carpark between 1976 and 1984 and was sealed and extended between 1989 and 2013;
- The eastern portion of the existing Carpark B was occupied by buildings that were demolished in 2016; and
- Construction of the eastern portion of Carpark B was undertaken in 2016.

3 FIELD AND LABORATORY INVESTIGATIONS

3.1 Sampling Plan

The NSW EPA (2022) Sampling design part 1 - application recommend a minimum of 18 sampling locations to characterise a site of this size (7,500m²).

Based on the above, 36 soil samples were collected from 18 boreholes (BH1 to BH18).

3.2 Field Work

Field work for the assessment was undertaken on 20 and 21 August 2022 and included:

- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination (if any);
- The drilling of 18 boreholes, designated BH-CB1 TO BH-CB18, that were logged and sampled by a Senior Geotechnical Engineer from RGS.

The locations of the sampling points are shown on Figure 3. They were obtained on site and located by measurement relative to existing site features.

Soil samples were taken from the pavement fill and the underlying natural material using disposable gloves sampling off the drill rig auger that was decontaminated between sampling points using Decon90 detergent. The samples were collected in acid-rinsed 250mL glass jars and zip lock bags and placed in an ice-chilled cooler box.

3.2.1 Laboratory Analysis

Samples were transported under chain-of-custody conditions to ALS Laboratory Group, a NATA accredited specialist chemical testing laboratory, to be analysed for the following suite of contaminants;

- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX);
- Organochlorine and Organophosphorus Pesticides (OC/OPs);
- Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc);
- Polychlorinated Biphenyls (PCB); and
- Presence and quantification of asbestos.

The results are presented in Appendix C.

3.3 Data Quality Objectives

The Data Quality Objectives (DQOs) are presented in Table 3.

Table 3 – Data Quality Objectives

DQO	Details of Process	
State the Problem	A Stage 1 and Stage 2 SCA is required to assess the suitability of the site for the proposed hospital development from a contamination perspective. The principal study questions that are: • What is the nature and extent of soil contamination on the subject land (if any)?; and • Is the land suitable for the proposed hospital redevelopment from a contamination viewpoint?	
Identify the Decision		
Identify Inputs to the Decision	The primary inputs are: Site history study; Site walkover assessment; Chemical analysis of selected soil samples; and Results summary.	
Define the Boundary of the Assessment	 The spatial boundaries are limited to the Carpark B boundaries as shown on Figure 2; The investigation and screening levels for a Residential B land use scenario (limited access to soil) as a conservative measure. 	

	The decision rules for the investigation are: • If concentrations of contaminants in soil exceed the adopted investigation and screening levels for a Residential B land use scenario (as a conservative measure), then further assessment may be required; Decision criteria for QA/QC measures are defined in Section 5. A	
	decision on the acceptance of analytical data will be made on the basis of the data quality indicators (DQIs) in the context of precision, accuracy, representativeness, completeness and comparability (PARCC) parameters as follows:	
	Precision: NATA registered laboratories were used following NATA endorsed methods. An appropriate number of intralaboratory samples were collected and analysed (following ASC NEPM guidance), the results of which are considered to be satisfactory;	
Develop a Decision Rule	Accuracy: The laboratory limit or reporting (LOR) was appropriate for the screening criteria utilised. NATA registered laboratories were used following NATA endorsed methods including appropriate method blanks, laboratory control samples, laboratory spikes and duplicates the results of which are considered to be satisfactory.	
	 Representativeness - The samples were received by the laboratories in good condition. The data obtained is considered to be representative of the soils present on site; Completeness - Experienced field staff were utilised to undertake the sampling and keep appropriate documentation. Samples were in proper custody between the field and reaching the laboratory. The laboratories performed the tests requested. The data obtained from the field investigations is considered to be relevant and usable; and Comparability - Sample holding times were met and samples were properly and adequately preserved. Field sampling and handling procedures were followed. The data collected is considered to be comparable. 	
Specify Acceptable Limits on Decision Errors	 Acceptable limits for QA/QC measures are defined in Section 5; Acceptable investigation and screening levels are those for a Residential B land use scenario; and Specific limits are in accordance with the appropriate NSW EPA guidelines including indicators of data quality and standard procedures for field sampling and handling. 	
Optimise the Design for Obtaining Data	The required data if expressed field and ignoratory investigations is	

4 GUIDELINES AND ASSESSMENT CRITERIA

Assessment as outlined in NSW EPA Guidelines for Consultants Reporting on Contaminated Land (2020).

To evaluate results, and for guidance on assessment requirements, the assessment adopted the guidelines provided in the National Environment Protection (Assessment of Site Contamination) Measure as amended in 2013 (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios.

The proposed future land use is for an ongoing rural healthcare facility. As such, comparison with the NEPM guideline Health Investigation and Screening Levels for Residential B (high rise buildings and apartments with limited access to soil) land use is considered appropriate for this site as a conservative measure. In accordance with the NEPM guideline the following criteria were adopted for this assessment:

- Health Investigation Levels (HILs) for Residential 'B' land use (HIL-B) were used to assess the
 potential human health impact of heavy metals and polycyclic aromatic hydrocarbons
 (PAHs);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils
 on a Residential B site were adopted as appropriate for the soils encountered to assess the
 potential human health impact of petroleum hydrocarbons and benzene, toluene,
 ethylbenzene and xylene (BTEX) compounds;
- Ecological Investigation Levels (EILs) for urban residential and public open space land use were used for evaluation of the potential ecological / environmental impact of heavy metals and PAHs;
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a Residential B land use site were adopted as appropriate for the soils encountered, to assess the potential ecological / environmental impact of petroleum hydrocarbons and BTEX compounds.

In accordance with NEPM 2013, exceedance of the respective criteria does not necessarily deem that remediation or clean-up is required but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in the results summary table in Appendix C.

5 QUALITY ASSURANCE / QUALITY CONTROL

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. Sampling equipment was decontaminated between sample locations and a clean pair of nitrile gloves used for the collection of each sample into laboratory supplied glass sampling jars.

Samples were placed on ice on-site and maintained on ice during transport to the testing laboratories. Two duplicate samples were collected and submitted to the laboratory for analysis for quality control purposes as follows:

- Duplicate (CB-D2) Replicate of primary sample BH-CB13 0.3 0.4m; and
- Duplicate (CB-D3) Replicate of primary sample BH-CB17 0.4 0.5m.

The Relative Percent Differences (RPDs) were calculated for the duplicate samples and are presented in the results summary table in Appendix B.

The duplicate RPDs were within the control limit of 40% (with the exception of Lead, Nickel, and Zinc in sample CB-D2) and indicated generally good correlation between the primary and duplicate samples.

It is noted that low analyte concentrations exaggerate the percentage differences with respect to small total concentration differences, therefore where results for the primary and duplicate, were less than 10 times the laboratory limit of reporting (LOR), the RPDs have been disregarded. The RPD for Lead, Nickel, and Zinc in sample CB-D2, which exceeded the 40% control limit as outlined above were disregarded on this basis.

In addition to the field quality control procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix C.

All laboratory quality control data is within acceptable limits for the tests carried out. Therefore, on the basis of the results of the field and laboratory quality control procedures and testing, the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

6 RESULTS

6.1.1 Subsurface Conditions

The soil types recorded in surface samples are summarised below in Table 4.

Table 4: Summary of Subsurface Conditions (Surface Samples)

Sample ID	Description
BH-CB2 0.04-0.1	
BH-CB6 0.04-0.1	
BH-CB12 0.05-0.1	
BH-CB14 0.05-0.1	Fill (Pavement Gravel): Sandy Clayey GRAVEL, fine to medium grained angular gravel, fine to medium grained sand
BH-CB16 0.05-0.1	
BH-CB18 0.05-0.1	
BH-CB4 0.04-0.1	
BH-CB7 0.06-0.1	
BH-CB1 0.4-0.5	
BH-CB1 0.5-0.6	Residual/Colluvial Soil: CLAY and Silty CLAY, medium to high plasticity, with some fine grained angular gravel
BH-CB2 0.5-0.6	

	BH-CB3 0.5-0.6
	BH-CB4 0.5-0.6
	BH-CB5 0.4-0.5
	BH-CB5 0.5-0.95
	BH-CB6 0.5-0.6
	BH-CB7 0.5-00.6
	BH-CB8 0.5-0.6
	BH-CB9 0.45-0.5
	BH-CB9 0.5-0.6
	BH-CB10 0.3-0.4
	BH-CB11 0.5-0.6
	BH-CB12 0.5-0.6
	BH-CB13 0.3-0.4
	BH-CB14 0.5-0.6
	BH-CB15 0.1-0.2
	BH-CB17 0.4-0.5
	BH-CB17 0.5-0.6
	BH-CB18 0.5-0.6
Ĺ	

6.1.2 Laboratory Results

An appraisal of the laboratory test results presented in Appendix C is provided below with reference to the adopted soil investigation and screening levels discussed in Section 4.

- Concentrations of heavy metals were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Residential B site in each of the samples analysed;
- Concentrations of TRH, PAH, BTEX and OP pesticides were below the laboratory limit of reporting in each of the samples analysed except sample BH-CB14 0.05-0.1 that had elevated levels of TRH C₃₄-C₄₀ fraction, sample BH-CB16 0.05-0.1 that had elevated levels of TRH C₁₆-C₃₄ fraction and TRH C₃₄-C₄₀ fraction, and sample BH-CB18 0.05-0.1 that had elevated levels of TRH C₃₄-C₄₀ fraction, however the levels were well below the adopted ecological investigation criteria and management limits for a Residential (B) site.
- Concentrations of PCB and OC pesticides were either below the laboratory limit of reporting or below the adopted health investigation criteria for a Residential B site in each of the samples analysed; and
- Asbestos was not detected in the remaining soil samples.

6.2 Conceptual Site Model

Based on the site observations and knowledge obtained about site activities as outlined above, a conceptual site model (CSM) has been developed.

6.2.1 Potential Sources of Contamination

Potential Areas of Environmental Concern (AECs) and Chemicals of Concern (COCs) identified for the assessment are outlined in Table 5.

Table 5: Potential AECs and COCs

AEC	Mode of Potential Contamination	Potential COCs	Likelihood of Contamination
AEC1: Soils in the vicinity of structures previously demolished	Potentially hazardous building materials	Lead and asbestos	Moderate
AEC2: Fill placed for the carpark	Importation of potentially contaminated fill	Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP and asbestos	Low to moderate
AEC3: Previously vegetated areas	pesticides used for general landscape upkeep.	OC/OPP	Low to moderate
AEC4: Previously unsealed carpark area	Oil spills or fuel spills	TPH, BTEX, PAH, Heavy metals	Low to moderate
Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc BTEX - Benzene, Toluene, Ethylbenzene and Xylene TPH - Total Petroleum Hydrocarbons PAH – Polycyclic Aromatic Hydrocarbons PCB – Polychlorinated Biphenyls OC/OPP – Organochlorine and Organophophorus Pesticides			

The approximate locations of the AEC's are shown on Figure 3.

6.2.2 Potential Exposure Pathways and Receptors

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure pathways and receptors identified for the assessment are summarised in Table 6.

Table 6: Potential Exposure Pathways and Receptors

Chemicals of Concern	Key Pathways	Key Receptors
Asbestos, heavy metals	Generation of dust during earthworks which is inhaled	Onsite - Construction and site workers Offsite - Adjacent sites
Asbestos, heavy metals, TPH, BTEX, PAH, PCB, OC/OPP	Skin contact / ingestion, plant uptake	Onsite - Construction and site workers, future site users, vegetation in landscaped areas
Heavy Metals, TPH, BTEX, PAH, PCB, OC/OPP	Surface runoff and leaching of soils	Offsite - Surface water ecosystems and users

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TPH - Total Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

PCB - Polychlorinated Biphenyls

OC/OPP - Organochlorine and Organophophorus Pesticides

6.3 Discussion

A Stage 1 and Stage 2 SCA was required to assess the site's suitability for the future hospital development from a contamination perspective.

The site history study indicates that the hospital layout has changed several times since initial construction. The Carpark B area was previously unsealed and occupied by buildings in the eastern portion.

Identified AEC's included soils in the vicinity of the structures previously demolished, fill placed for the carpark upgrade, previously vegetated areas, and areas previously used as an unsealed carpark.

No visual or olfactory evidence of contamination (such as oil staining or hydrocarbon odours) were observed.

The results of laboratory analysis of surface soil samples collected from four targeted locations (AEC's outlined above), revealed concentrations of the chemicals of concern were either below the laboratory reporting limit, or below the adopted health investigation criteria for a Residential B site.

Some elevated concentrations of TRH above the laboratory reporting limits were encountered in samples obtained from boreholes BH-CB14 0.05-0.1m (C_{34} - C_{40} fraction), BH-CB16 0.05-0.1m (C_{16} - C_{34} fraction and TRH C_{34} - C_{40} fraction), and BH-CB18 0.05-0.1m (C_{34} - C_{40} fraction), however the levels were well below the adopted ecological investigation criteria and management limits for a Residential (B) site.

Asbestos was not detected in any of the soil samples tested.

6.4 Conclusions and Recommendations

Based on the above and the findings of the Stage 1 and Stage 2 site SCA presented herein, the soils tested meet the requirements for a Residential B site as detailed in the NEPM 2013 guidelines and in accordance with 'State Environmental Planning Policy (Resilience and Hazards) 2021' the site is considered suitable for the proposed hospital development in its current state from a contamination perspective. .

Should potential evidence of site contamination be identified during development activities, such as soil staining, buried materials, odours or possible Asbestos Containing Materials (ACM), then a site contamination specialist should be contacted for advice without delay.

7 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are based on data collection, judgment, experience, and opinion. By nature, these investigations are less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Reviewed by

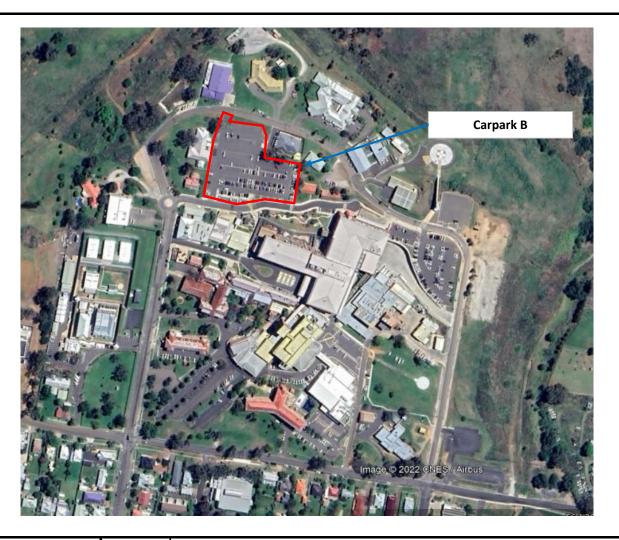
Louis Davidson

Senior Geotechnical Engineer

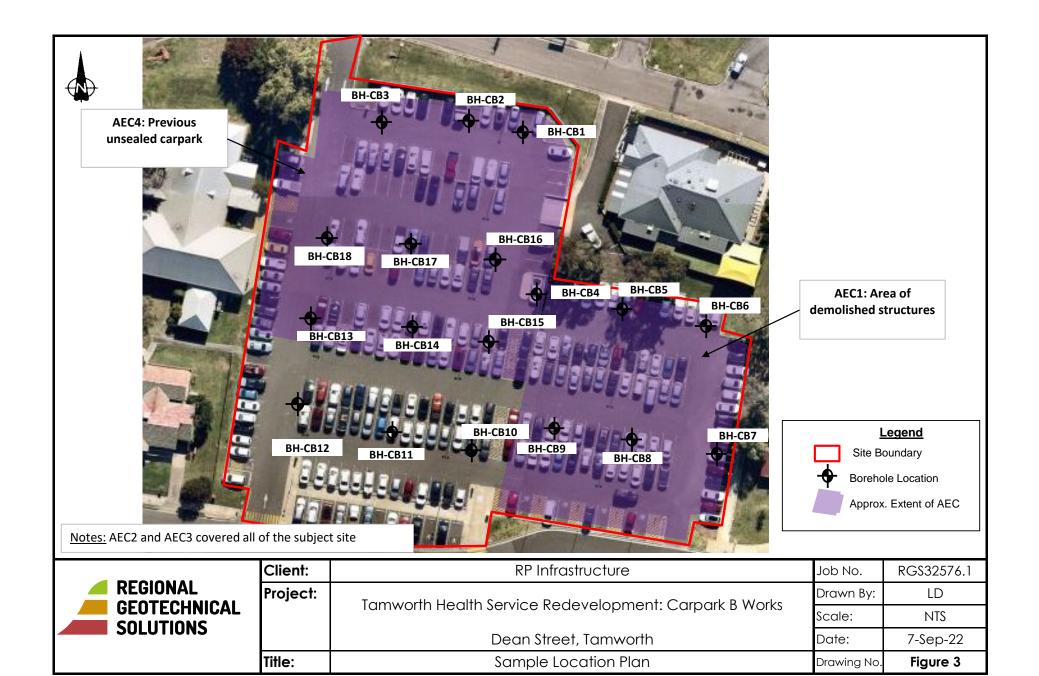
Andrew Hills

Senior Environmental Engineer

Figures

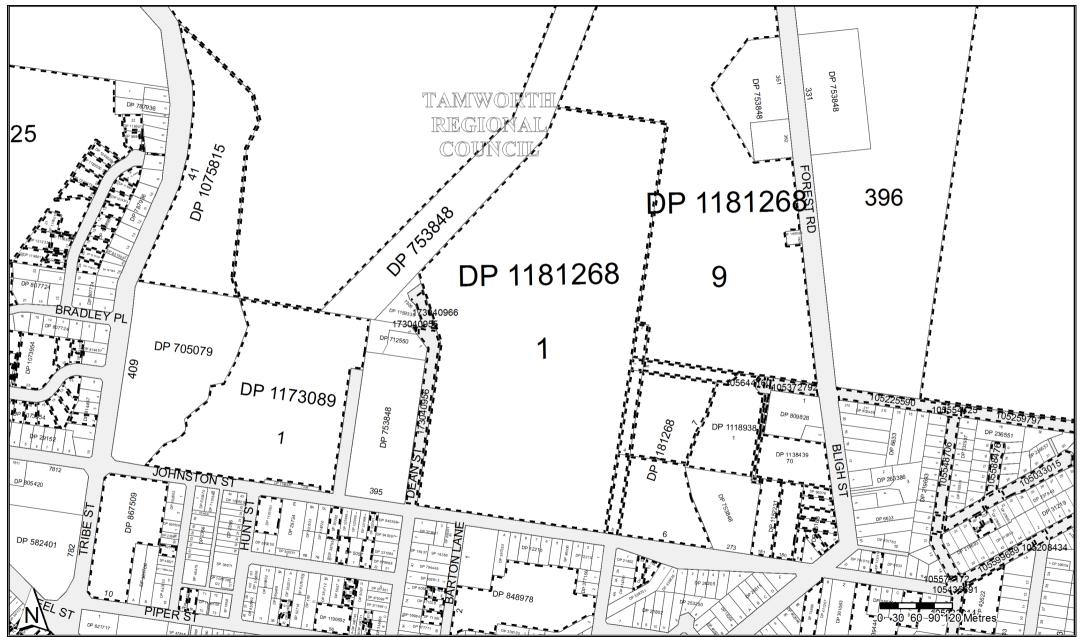


Client:	RP Infrastructure		RGS32576.1
Project:	Tamworth Health Service Redevelopment: Carpark B Works	Drawn By:	LD
	Tarriworm nealin service kedevelopmem. Carpark is works		NTS
	Dean Street, Tamworth		7-Sep-22
Title:	Site Location Plan	Drawing No.	Figure 1



REGIONAL
GEOTECHNICAL
SOLUTIONS

Client:	RP Infrastructure	Job No.	RGS32576.1
Project:	Tamworth Health Service Redevelopment: Carpark B Works	Drawn By:	LD
	ramworm nealin service kedevelopmem. Carpark is works	Scale:	NTS
	Dean Street, Tamworth		7-Sep-22
Title:	Site Layout Plan	Drawing No.	Figure 2



Appendix A Site History Documentation

Locality: NORTH TAMWORTH
LGA: TAMWORTH REGIONAL

Parish: TAMWORTH
County: INGLIS

Parish: TAMWORTH

Ref: NOUSER

Locality: NORTH TAMWORTH LGA: TAMWORTH REGIONAL County: INGLIS

	Status	Surv/Comp	Purpose
DP5057			
Lot(s): 6 PP1251197	WITHDRAWN	UNAVAILABLE	EASEMENT
Lot(s): 8		0.0	_,,,,
DP1139570	REGISTERED	SURVEY	REDEFINITION
DP25168			
Lot(s): 2, 3, 4, 5, 6, 8	DECICTEDED	CLIDVEV	CURDIVICION
■ DP1152231 DP322001	REGISTERED	SURVEY	SUBDIVISION
Lot(s): 1			
P1251197	WITHDRAWN	UNAVAILABLE	EASEMENT
DP371028			
Lot(s): 7B	VALITATION AVAINA		CONCOLIDATION
₽ DP1167165	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP392344 Lot(s): 6B			
P1167165	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP505056			
Lot(s): 2			
PP000010	WITHDRAWN	UNAVAILABLE	CONSOLIDATION
DP626018 Lot(s): 4			
P1167052	PRE-ALLOCATED	UNAVAILABLE	REDEFINITION
DP710383			
Lot(s): 2			
P1127918	REGISTERED	SURVEY	SUBDIVISION
DP814457			
Lot(s): 2	REGISTERED	SURVEY	SUBDIVISION
DP848978			
Lot(s): 2			
•	GE. VILLAS 1-36 SHOWN I	IN PLAN WITH MEMORAND	DUM AB21496
DP867509 Lot(s): 10			
P1134688	REGISTERED	SURVEY	EASEMENT
DP1026894			
Lot(s): 251, 252			
■ DP219693	HISTORICAL	SURVEY	SUBDIVISION
DP1062507 Lot(s): 61, 62			
DP587549	HISTORICAL	COMPILATION	SUBDIVISION
Lot(s): 62			
■ DP2356	HISTORICAL	COMPILATION	UNRESEARCHED
DP1065791			
Lot(s): 41, 42	HISTORICAL	SURVEY	UNRESEARCHED
P1073954	THOTONIOAL	JUNVLI	UNIVERSALICITED
Lot(s): 24			
P1140190	REGISTERED	SURVEY	SUBDIVISION
Lot(s): 10, 12, 13, 14, 15, 16, 17,			0.155.11.110.10.11
☐ DP814457	HISTORICAL	SURVEY	SUBDIVISION
Lot(s): 25 PP778289	HISTORICAL	SURVEY	SUBDIVISION
DP1075815	THOTONIOAL	OUIVET	OUDDIVIOION
Lot(s): 41			
P705079	HISTORICAL	SURVEY	CROWN FOLIO CREATION
DP1081866			
Lot(s): 101, 102, 103 PP5057	HISTORICAL	SURVEY	UNRESEARCHED
₩ DF3037	HISTORICAL	SURVET	UNINESEARUNEU

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

Ref: NOUSER

Locality:NORTH TAMWORTHParish:TAMWORTHLGA:TAMWORTH REGIONALCounty:INGLIS

		Status		Surv/Comp	Purpose
)P1101001 .ot(s): 1	1				
	DP29734	HISTORICAL		SURVEY	UNRESEARCHED
P1113727					G. W. 2027 W. 33.122
ot(s): 111,					
	DP814457	HISTORICAL		SURVEY	SUBDIVISION
<u>. </u>	DP1073954	HISTORICAL		SURVEY	SUBDIVISION
P1114638	8				
ot(s): 51	DD000405	LUCTODIOAL		OOMBU ATION	0110011/401011
	DP602465	HISTORICAL		COMPILATION	SUBDIVISION
	DP1026417	HISTORICAL		SURVEY	SUBDIVISION
	DP1031338	HISTORICAL		SURVEY	SUBDIVISION
P1118938	8				
ot(s): 1 💷 Γ	DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
	DP1099608	HISTORICAL		SURVEY	ROADS ACT, 1993
	NSW GAZ.	1110101110112	21-09-2007	0011121	Folio : 7235
	LOT 1 DP1099608 - SI	EE AD462184	21 00 2007		1 0110 . 7 200
ot(s): 1, 3					
****	NSW GAZ.		11-07-2008		Folio : 6941
	CLOSED ROAD				
	AD790097 - LOT 3 DP	1118938			
ot(s): 2	NCM CAZ		00 00 0000		Folio : 670
7	NSW GAZ. CLOSED ROAD		08-02-2008		Folio : 672
	LOT 2 DP1118938				
- P1119787					
ot(s): 2	•				
2	NSW GAZ.		22-02-2008		Folio: 1160
	CLOSED ROAD				
	LOT 2 DP1119787				
P1127918 ot(s): 97, 9					
	DP534738	HISTORICAL		SURVEY	SUBDIVISION
P1138439		THOTOTOTAL		CORVET	CODDIVIOION
ot(s): 70					
	DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
<u></u> [DP1118603	HISTORICAL		COMPILATION	CROWN FOLIO CREATION
22	NSW GAZ.		28-12-2007		Folio : 10758
	CLOSED ROAD				
	LOT 1 DP1118603				
P1140190					
ot(s): 221,	, 222 DP814457	HISTORICAL		SURVEY	SUBDIVISION
	DP1073954	HISTORICAL		SURVEY	SUBDIVISION
ا ھے 1152231		THOTORICAL		JUNVLI	SOBDIVISION
ot(s): 181	ı				
	DP1119787	HISTORICAL		COMPILATION	ROADS ACT, 1993
-	NSW GAZ.		21-12-2007		Folio : 9993
	CLOSED ROAD				
	LOT 1 DP1119787				
L					
L ot(s): 180,		HISTORICAL		COMPILATION	CROWN ADMIN NO.
L ot(s): 180, [[, 181 DP753848	HISTORICAL		COMPILATION	CROWN ADMIN NO.
ot(s): 180, ot(s): 180 ot(s): 180	, 181 DP753848 NSW GAZ.		16-08-2013		CROWN ADMIN NO. Folio: 3777 AND HOUSING CORPORATION IN HOMES NORTH

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Ref : NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Status Surv/Comp **Purpose** DP1158146 Lot(s): 7304 NSW GAZ. Folio: 2048 22-07-2016 REVOCATION OF RESERVATION OF CROWN LAND RESERVE NO. 96144 - LOTS 435-436 DP1054103 AND LOT 7304 DP1158146 DP1168984 Lot(s): 11, 13, 14, 15, 16 **SUBDIVISION** P787936 **HISTORICAL SURVEY** DP1173089 Lot(s): 1 DP47171 HISTORICAL SURVEY **CROWN FOLIO CREATION** DP753848 **HISTORICAL COMPILATION** CROWN ADMIN NO. DP1055791 HISTORICAL **SURVEY CROWN FOLIO CREATION** P1165492 HISTORICAL **SURVEY** REDEFINITION 01-07-2011 NSW GAZ. Folio: 4697 REVOCATION OF RESERVATION OF CROWN LAND RESERVE NO. 753848 - PART BEING LOTS 405-408 DP47171, LOT 431 DP1055791, LOTS 265, 330 AND 363 DP753848 AND LOT 1 DP1165492 DP1176430 Lot(s): 11, 12 DP356648 HISTORICAL SURVEY UNRESEARCHED DP1181268 Lot(s): 1 DP533835 HISTORICAL **SURVEY** RESUMPTION OR ACQUISITION DP1195542 REGISTERED **SURVEY EASEMENT** Lot(s): 6 RESUMPTION OR ACQUISITION DP1188571 REGISTERED SURVEY Q NSW GAZ 11-10-2013 Folio: 4470 ACQUIRED FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982 LOT 61 DP1188571 AND EASEMENTS DESIGNATED (A) AND (B) SHOWN IN DP1188571 Lot(s): 3, 8 DP1175412 HISTORICAL COMPILATION CROWN ROAD ENCLOSURE Lot(s): 2, 9 DP1076546 HISTORICAL COMPILATION DEPARTMENTAL Lot(s): 1, 4, 5, 6, 7 CROWN ADMIN NO. DP753848 HISTORICAL COMPILATION Lot(s): 8 NSW GAZ. 11-05-2012 Folio: 1366 **CLOSED ROAD** LOT 1 DP1175412 NSW GAZ. 22-06-2012 Folio: 2514 ADDITION TO RESERVED CROWN LAND RESERVE NO. 14778 - LOT 1 DP1175412 Lot(s): 1, 2, 3, 4, 5 NSW GAZ. Folio: 5244 21-12-2012 ACQUIRED FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982 - LOTS 1-5 DP1181268 DP1185500 Lot(s): 17, 18 DP787936 HISTORICAL SURVEY SUBDIVISION DP1168984 HISTORICAL SURVEY SUBDIVISION DP1190692 Lot(s): 56 **HISTORICAL** DP5057 SURVEY UNRESEARCHED DP408923 HISTORICAL SURVEY UNRESEARCHED DP873857 HISTORICAL **COMPILATION** CONSOLIDATION DP1198311 Lot(s): 1 DP24858 HISTORICAL SURVEY UNRESEARCHED

Caution:

DP534738

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

SUBDIVISION

SURVEY

HISTORICAL

Ref : NOUSER

Locality:NORTH TAMWORTHParish:TAMWORTHLGA:TAMWORTH REGIONALCounty:INGLIS

	EGA . TAWWORTH REGION	AL	County . INGLIS
	Status	Surv/Comp	Purpose
Lot(s): 1, 5			
DP416035	HISTORICAL	SURVEY	UNRESEARCHED
DP1199017			
Lot(s): 20, 21, 22, 23, 24	LUCTORICAL	CLIDVEV	CLIDDIVICION
DP787936	HISTORICAL	SURVEY	SUBDIVISION
DP1168984	HISTORICAL	SURVEY	SUBDIVISION
₽ DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1206794			
Lot(s): 251, 252	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVEY	SUBDIVISION
□ DP1199017	HISTORICAL	SURVET	SUBDIVISION
DP1212334 Lot(s): 26, 27, 28			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVET	SOBDIVISION
DP1219373 Lot(s): 29, 30, 32			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
P1168984	HISTORICAL	SURVEY	SUBDIVISION
P1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
_	HISTORICAL	SURVEY	SUBDIVISION
□ DP1212334	HISTORICAL	SURVET	SUBDIVISION
DP1231114 ₋ot(s): 3			
₽ DP6633	HISTORICAL	SURVEY	UNRESEARCHED
DP1233761	1.101.01.1101.12		0.11.12021.1101.122
ot(s): 155, 156			
DP21802	HISTORICAL	SURVEY	UNRESEARCHED
DP1243825			
ot(s): 34, 35			
DP787936	HISTORICAL	SURVEY	SUBDIVISION
DP1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
DP1212334	HISTORICAL	SURVEY	SUBDIVISION
DP1219373	HISTORICAL	SURVEY	SUBDIVISION
P1239283	HISTORICAL	SURVEY	SUBDIVISION
DP1248231			
_ot(s): 7, 10			
₽ DP728359	HISTORICAL	SURVEY	SUBDIVISION
DP1078221	HISTORICAL	SURVEY	SUBDIVISION
DP1239283	HISTORICAL	SURVEY	SUBDIVISION
.ot(s): 10			
DP807724	HISTORICAL	SURVEY	SUBDIVISION
ot(s): 7			
MSW GAZ.	18-05-20		Folio: 2604
			MPENSATION) ACT, 1991; DECLARATION PURSUAI G LOT 411 DP728359. ERRATUM GOV. GAZ. 1-6-2001
NSW GAZ.	04-07-20 OF RESERVATION OF CROWI		Folio : 2587).

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

753848 - LOT 33 DP1078221

Ref: NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

	Status	Surv/Comp	Purpose
SP39444		·	·
SP76794	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP76795	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP76796	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP42622			
SP92944	REGISTERED	COMPILATION	STRATA SUBDIVISION PLAN
SP71381			
DP599841	HISTORICAL	COMPILATION	SUBDIVISION
DP1060436	HISTORICAL	SURVEY	REDEFINITION
SP74886			
DP411207	HISTORICAL	SURVEY	UNRESEARCHED
DP1082072	HISTORICAL	SURVEY	REDEFINITION
SP79603			
DP1117945	HISTORICAL	SURVEY	CONSOLIDATION
SP83382			
DP367939	HISTORICAL	SURVEY	UNRESEARCHED
DP1139570	HISTORICAL	SURVEY	REDEFINITION
SP96078			
P25168	HISTORICAL	SURVEY	UNRESEARCHED
DP1234151	HISTORICAL	SURVEY	REDEFINITION
SP98897			
P787936	HISTORICAL	SURVEY	SUBDIVISION
DP1168984	HISTORICAL	SURVEY	SUBDIVISION
DP1185500	HISTORICAL	SURVEY	SUBDIVISION
DP1199017	HISTORICAL	SURVEY	SUBDIVISION
DP1212334	HISTORICAL	SURVEY	SUBDIVISION
DP1219373	HISTORICAL	SURVEY	SUBDIVISION
Road			
Polygon Id(s): 105033014			
MSW GAZ.	07-06-2		Folio : 1861
	ROWN ROAD TO COUNCI LAND SHADED RED IN TH		ING THIS GAZETTE NOTIFICATION
Polygon Id(s): 105644160			
P1099608	HISTORICAL	SURVEY	ROADS ACT, 1993
Polygon_ld(s): 105010105, 10			
NSW GAZ.	05-05-2 ROWN ROAD TO COUNCI		Folio : 2709

TRANSFER OF CROWN ROAD TO COUNCIL

Polygon Id(s): 173040955, 173040956, 173040966

NSW GAZ. 03-07-2015 Folio: 2042

TRANSFER OF CROWN ROAD TO COUNCIL

Polygon Id(s): 105033015, 105208434, 105225589, 105225590, 105259797, 105361269, 105435691, 105543025, 105548706,

105554425, 105577172, 105582842, 105588476, 105599689

EX-SUR 68/34 DP978236

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

Ref : NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
	·	•
DP189	COMPILATION	UNRESEARCHED
DP2356	COMPILATION	UNRESEARCHED
DP5057 DP5674	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP5674 DP5733	SURVEY	UNRESEARCHED
DP5733 DP6633	SURVEY	UNRESEARCHED
DP0633 DP12210	SURVEY	UNRESEARCHED
DP18200	SURVEY	UNRESEARCHED
DP21802	SURVEY	UNRESEARCHED
DP24811	SURVEY	UNRESEARCHED
DP25168	SURVEY	UNRESEARCHED
DP25555	SURVEY	UNRESEARCHED
DP26205	SURVEY	UNRESEARCHED
DP29152	SURVEY	UNRESEARCHED
DP29514	SURVEY	UNRESEARCHED
DP29734	SURVEY	UNRESEARCHED
DP31219	SURVEY	UNRESEARCHED
DP44204 DP214117	COMPILATION SURVEY	CROWN FOLIO CREATION SUBDIVISION
DP214117 DP219693	SURVEY	SUBDIVISION
DP232936	SURVEY	SUBDIVISION
DP232937	SURVEY	SUBDIVISION
DP236551	SURVEY	SUBDIVISION
DP236557	SURVEY	SUBDIVISION
DP237949	SURVEY	SUBDIVISION
DP239079	SURVEY	SUBDIVISION
DP253250	SURVEY	SUBDIVISION
DP257195	SURVEY	CROWN FOLIO CREATION
DP263313	SURVEY	SUBDIVISION
DP263386	SURVEY	SUBDIVISION
DP301063 DP308731	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP308731	SURVEY	UNRESEARCHED
DP321998	SURVEY	UNRESEARCHED
DP321999	SURVEY	UNRESEARCHED
DP322000	SURVEY	UNRESEARCHED
DP322001	SURVEY	UNRESEARCHED
DP331064	SURVEY	UNRESEARCHED
DP337477	SURVEY	UNRESEARCHED
DP338466	SURVEY	UNRESEARCHED
DP338731	SURVEY	UNRESEARCHED UNRESEARCHED
DP339193 DP339836	SURVEY COMPILATION	UNRESEARCHED
DP355838	SURVEY	UNRESEARCHED
DP362211	SURVEY	UNRESEARCHED
DP367939	SURVEY	UNRESEARCHED
DP369706	SURVEY	UNRESEARCHED
DP371028	SURVEY	UNRESEARCHED
DP371899	SURVEY	UNRESEARCHED
DP373601	SURVEY	UNRESEARCHED
DP375099	SURVEY	UNRESEARCHED
DP377106	SURVEY	UNRESEARCHED
DP377551	SURVEY	UNRESEARCHED
DP381712	SURVEY	UNRESEARCHED
DP385488 DP392344	SURVEY SURVEY	UNRESEARCHED UNRESEARCHED
DP397253	COMPILATION	UNRESEARCHED
DP398004	SURVEY	UNRESEARCHED
DP401533	SURVEY	UNRESEARCHED
DP402646	SURVEY	UNRESEARCHED
DP405009	SURVEY	UNRESEARCHED
DP411207	SURVEY	UNRESEARCHED
DP414261	COMPILATION	UNRESEARCHED
DP414920	SURVEY	UNRESEARCHED
DP500251	SURVEY	SUBDIVISION
Caution:	This information is provided as a searching aid only. Whilst ex-	very endeavour is made the ensure that current map, plan and

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

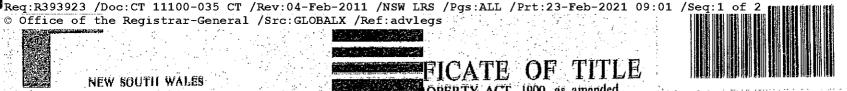
Ref : NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
DP500255	SURVEY	SUBDIVISION
DP502813	SURVEY	SUBDIVISION
DP505056	COMPILATION	SUBDIVISION
DP509962	SURVEY	SUBDIVISION
DP514596	SURVEY	SUBDIVISION
DP515933	SURVEY	SUBDIVISION
DP521675	SURVEY	SUBDIVISION
DP529855	SURVEY	SUBDIVISION
DP547777	SURVEY	SUBDIVISION
DP577771	SURVEY	SUBDIVISION
DP582401	SURVEY	SUBDIVISION
DP599841	COMPILATION	SUBDIVISION
DP602489	SURVEY	SUBDIVISION
DP602802	SURVEY SURVEY	SUBDIVISION SUBDIVISION
DP621717 DP624629	COMPILATION	CONSOLIDATION
DP625470	COMPILATION	CONSOLIDATION
DP626018	COMPILATION	CONSOLIDATION
DP701079	SURVEY	SUBDIVISION
DP705077	COMPILATION	CROWN FOLIO CREATION
DP705079	SURVEY	CROWN FOLIO CREATION
DP710383	COMPILATION	SUBDIVISION
DP711064	COMPILATION	CONSOLIDATION
DP712550	SURVEY	SUBDIVISION
DP753848	COMPILATION	CROWN ADMIN NO.
DP787936	SURVEY	SUBDIVISION
DP794449	COMPILATION	SUBDIVISION
DP805420	COMPILATION	SUBDIVISION
DP807724	SURVEY	SUBDIVISION
DP809261	SURVEY	SUBDIVISION
DP809828	SURVEY	SUBDIVISION
DP814457	SURVEY	SUBDIVISION
DP817048	SURVEY	SUBDIVISION
DP831763	SURVEY	SUBDIVISION
DP837819 DP843333	SURVEY SURVEY	SUBDIVISION SUBDIVISION
DP845242	SURVEY	SUBDIVISION
DP848978	SURVEY	SUBDIVISION
DP850962	SURVEY	SUBDIVISION
DP851503	SURVEY	SUBDIVISION
DP867509	SURVEY	CONSOLIDATION
DP879868	SURVEY	SUBDIVISION
DP940397	COMPILATION	UNRESEARCHED
DP940398	COMPILATION	UNRESEARCHED
DP1026894	SURVEY	SUBDIVISION
DP1062507	SURVEY	SUBDIVISION
DP1065252	SURVEY	SUBDIVISION
DP1065791	SURVEY	SUBDIVISION
DP1067396	SURVEY	SUBDIVISION
DP1073954	SURVEY	SUBDIVISION
DP1075815	SURVEY	SUBDIVISION
DP1081866	SURVEY	SUBDIVISION
DP1101001 DP1113727	COMPILATION SURVEY	CONSOLIDATION SUBDIVISION
DP1113727 DP1114638	SURVEY	SUBDIVISION
DP1114636 DP1118938	SURVEY	ROADS ACT, 1993
DP1110936 DP1119787	COMPILATION	ROADS ACT, 1993 ROADS ACT, 1993
DP1123106	SURVEY	SUBDIVISION
DP1127918	SURVEY	SUBDIVISION
DP1138439	COMPILATION	CONSOLIDATION
DP1140190	SURVEY	SUBDIVISION
DP1140190	UNRESEARCHED	SUBDIVISION
DP1152231	SURVEY	SUBDIVISION
DP1152231	UNRESEARCHED	SUBDIVISION
DP1158146	COMPILATION	CROWN LAND CONVERSION
DP1159323	COMPILATION	CROWN LAND CONVERSION
Caution:	This information is provided as a searching aid onl	y. Whilst every endeavour is made the ensure that current map, plan and

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.


Ref: NOUSER

Locality: NORTH TAMWORTHParish: TAMWORTHLGA: TAMWORTH REGIONALCounty: INGLIS

Plan	Surv/Comp	Purpose
DP1159337	COMPILATION	CROWN LAND CONVERSION
DP1159338	COMPILATION	CROWN LAND CONVERSION
DP1168984	SURVEY	SUBDIVISION
DP1168984	UNRESEARCHED	SUBDIVISION
DP1173089	SURVEY	CONSOLIDATION
DP1176430	SURVEY	SUBDIVISION
DP1181268	SURVEY	RESUMPTION OR ACQUISITION
DP1185500	SURVEY	SUBDIVISION
DP1190692	COMPILATION	CONSOLIDATION
DP1198311	SURVEY	SUBDIVISION
DP1198311	UNRESEARCHED	SUBDIVISION
DP1199017	SURVEY	SUBDIVISION
DP1199449	SURVEY	CONSOLIDATION
DP1199449	UNRESEARCHED	CONSOLIDATION
DP1206794	SURVEY	SUBDIVISION
DP1212334	SURVEY	SUBDIVISION
DP1219373	SURVEY	SUBDIVISION
DP1231114	SURVEY	REDEFINITION
DP1233761	SURVEY	REDEFINITION
DP1233761	UNRESEARCHED	REDEFINITION
DP1243825	SURVEY	SUBDIVISION
DP1248231	SURVEY	SUBDIVISION
SP18355	COMPILATION	STRATA PLAN
SP18437	COMPILATION	STRATA PLAN
SP18925	COMPILATION	STRATA PLAN
SP30550	COMPILATION	STRATA PLAN
SP37260	COMPILATION	STRATA PLAN
SP38671	COMPILATION	STRATA PLAN
SP39444	COMPILATION	STRATA PLAN
SP42622	COMPILATION	STRATA PLAN
SP46006	COMPILATION	STRATA PLAN
SP47818	COMPILATION	STRATA PLAN
SP48021	COMPILATION	STRATA PLAN
	COMPILATION	_
SP48479		STRATA PLAN
SP52716	COMPILATION	STRATA PLAN
SP71381	COMPILATION	STRATA PLAN
SP74886	COMPILATION	STRATA PLAN
SP79603	COMPILATION	STRATA PLAN
SP83382	COMPILATION	STRATA PLAN
SP96078	COMPILATION	STRATA PLAN
SP96078	UNRESEARCHED	STRATA PLAN
SP98897	COMPILATION	STRATA PLAN
SP98897	UNRESEARCHED	STRATA PLAN

OHICE

© Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

NEW SOUTH WALES

Prior Title (Crown Grant) Volume 4517 Folio 90

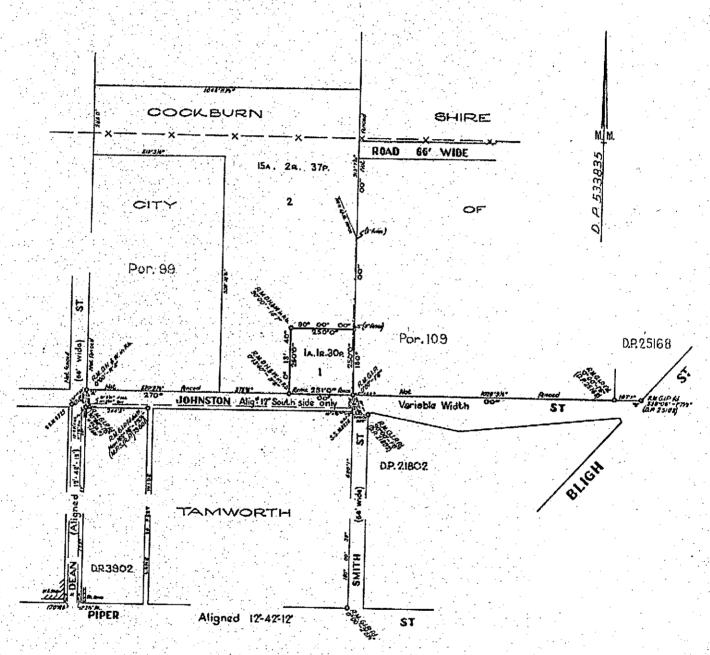
11100

Edition issued 22-7-1969

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule

Witness

AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON


AUTIONED

L' bolliver

Registrar General.

PLAN SHOWING LOCATION OF LAND

SEE AUTO FOLIO

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 533835 in the City of Tamworth and Shire of EXCEPTING THEREOUT the minerals reserved Cockburn Parish of Tamworth and County of Inglis. by the Crown Grants.

FIRST SCHEDULE

THE TAMWORTH BASE MOSPITAL TAMWORTH DISTRICT HOSPITAL

7-1-1970 CRM

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to.

Registrar General.

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

g:R393923 Office of	the	Re	gi	111 str	00- ar-	-03! -Gei	5 C	Γ /I	Rev: /Src	04- ::GI	Feb OBA	-20 LX	11 /Re	/NS	w L dvl	RS /	'Pgs	:AL	L /1	Prt	23-	-Feb	>-20)21	09:	01	/Sec	1:2	of	2					
	Signature of Registrar General		Angelia - in the institute Angelia and institute of institute of Angelia and institute of the institute of t				Comment of the Section Continues of the Comments of the Commen	to a decrease the second secon	make safety many basemassayan day is manadan	And the state of t		and the second s	The property of the state of th																			a de la companya de l		A de la constante de la consta	
	ENTERED		A Commanda of Special Matter No. 100 and Special Section of the Spec							and the second s		pro a strain to an many to memorancy repair					CANCELLATION																	The page of the second	
	DATE		AND THE SAMELANCE AS A VALUE OF THE SAME AND THE SAME AND THE SAME							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		to dame of transfer or the very data of the very transfer to the party of the latest transfer to the latest transfer transfer to the latest transfer trans	The state of the s																				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a top (Laser) department of the control of the cont	
	INSTRUMENT		de Apparent is serie de maioritation de la proposition della propo														Signature of Registrar General																1		
	NATURE		Angle 14 of the Control of the Contr					management replication of the state of the s			The state of the s						ENTERED										*			The state of the s					
FIRST SCHEDULE (continued)															《新·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯·斯	SECOND SCHEDULE (continued)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		
	REGISTERED PROPRIETOR											a verification of the control of the					PARTICULARS																		
	REG		pe was a had make planter as supplication of market product of market product of the product of the control of						1	Alternativement of the best of the control of the best of the second of the second of the control of the contro	The comment of the contract of						100	-											o = 24.		ту, Таба байгона		Property and the second		
										The second of th	due to the state of the state o	SEE AUTO EDINO					INSTRUMENT																taganini yara kasa mahiyisingada da ishinda salam parkaranda gayisidanda ma'asa da salamasanganinta	e delige, mini de se esta ministra de delige, despeta de se de despeta de se despetada mentalmente en mentalme	

Lol 32

00111

loV.

(Page 2 of 2 pages)

PERSONS ARE

NEW SOUTH WALES

WARNING.

TIC

DOCUMENT MUST

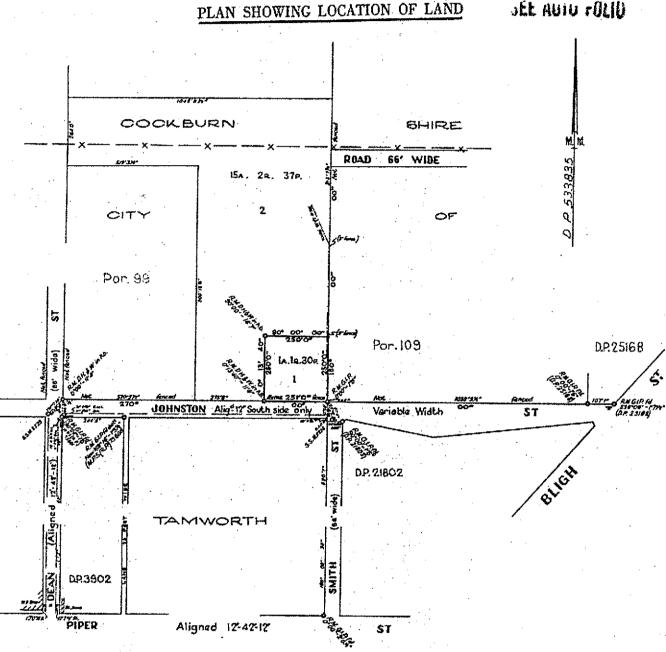
Z

8

REMOVED FROM

11118 Fol.

Edition issued 12-8-1969 L319524


I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

L. bolliver

Prior Title (Crown Grant) Volume 4517 Folio 90

Registrar General.

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 1 in Deposited Plan 533835 in the City of Tamworth Shire of Ceekburn Parish of Tamworth and County of Inglis EXCEPTING THEREOUT the minerals reserved by the Crown Grant.

FIRST SCHEDULE

THE COMMONWEALTH OF AUSTRALIA.

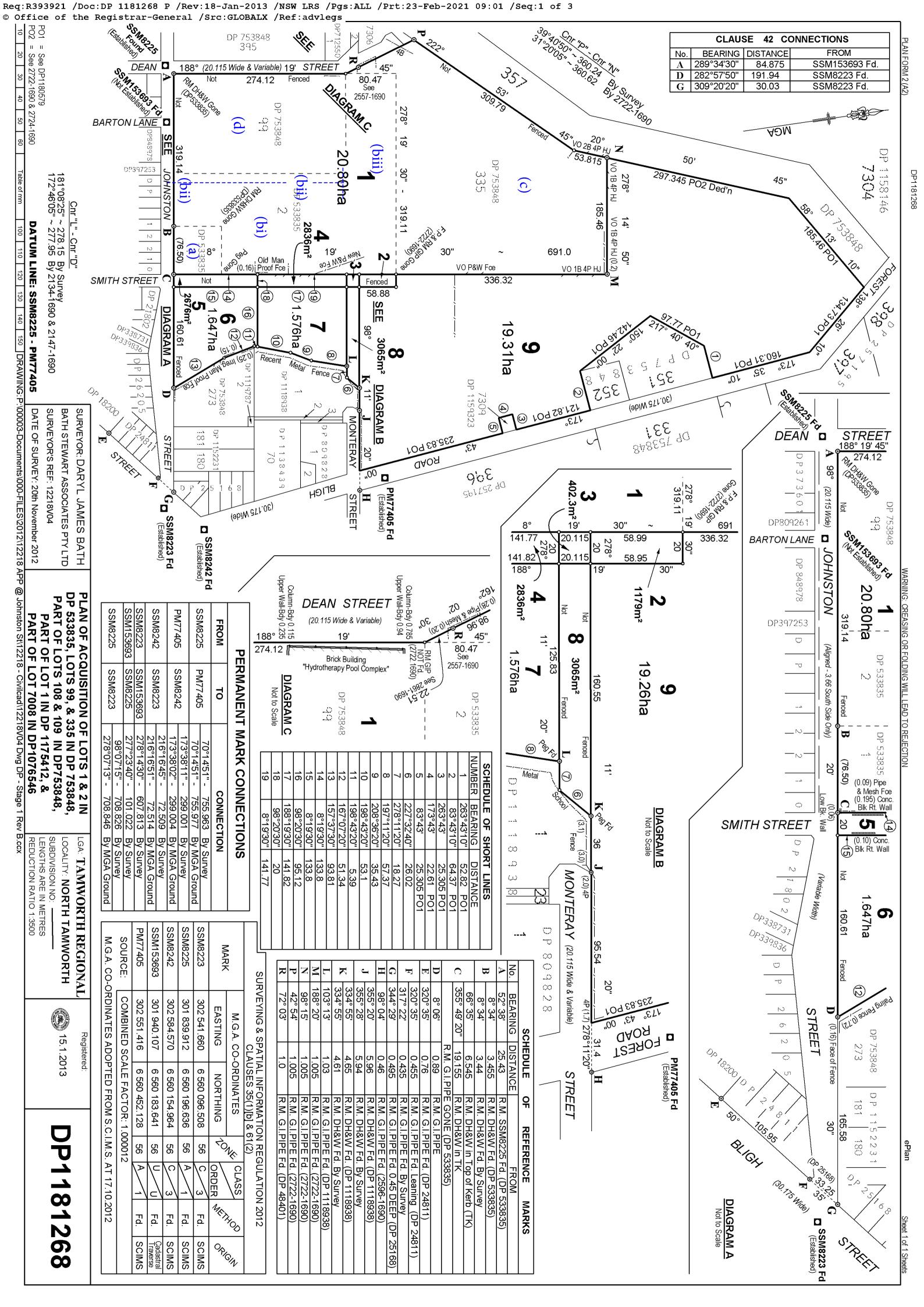
SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to.

Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

Reg. Gen.


1962M7500

Fol 235

81111

JoV

(Page 2 of 2 pages)

PLAN FORM 6 (2012)

WARNING: Creasing or folding will lead to rejection

ePlan

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 1 of 2 Sheet(s)

Office Use Only

Registered:

Office Use Only 15.1.2013

Title System:

TORRENS

Purpose:

ACQUISITION

PLAN OF ACQUISITION OF LOTS 1 & 2 IN DP533835, LOTS 99 & 335 IN DP753848, PART OF LOTS 108 & 109 IN DP753848, PART LOT 1 IN DP1175412, & PART OF LOT 7008 IN DP1076546

Crown Lands NSW/Western Lands Office Approval

I, (Authorised Officer) in approving this plan certify that all necessary approvals in regard to the allocation of the land shown herein have been given.

Signature:

Date:

File Number:

Office:

Subdivision Certificate

*Authorised Person/*General Manager/*Accredited Certifier, certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to the proposed subdivision, new road or reserve set out herein.

Signature:

Accreditation number:

Consent Authority: TAMWORTH REGIONAL COUNCIL.....

File number:

Date of endorsement:

Subdivision Certificate number:

*Strike through if inapplicable.

Statements of intention to dedicate public roads, public reserves and drainage reserves.

IT IS INTENDED TO ACQUIRE LOTS 1 TO 5, INCLUSIVE, FOR THE PURPOSES OF THE HEALTH ADMINISTRATION ACT 1982, AS REFERRED TO BY NOTICE IN THE NSW **GOVERNMENT GAZETTE No. 130 FOLIO 5244 DATED** 21.12.2012.

DP1181268

LGA: TAMWORTH REGIONAL

Locality: North Tamworth

Parish: Tamworth

County: Inglis

Survey Certificate

I. DARYL JAMES BATH

of BATH, STEWART ASSOCIATES Pty Ltd

PO Box 403, Tamworth NSW 2340 (Tel: 02 6766-5966)

a surveyor registered under the Surveying and Spatial Information Act 2002, certify that:

- *(a) The land shown in the plan was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on
- *(b) The part of the land shown in the plan excluding part of Lot 9 was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on, 20th November 2012. The part not surveyed was compiled in accordance with that Regulation.
- *(c) The land shown in this plan was compiled in accordance with the Surveying and Spatial Information Regulation 2012.

.......... Dated: 22.11.2012....

Signature: Surveyor ID: 1307

Datum Line: SSM8225 - PM77405

Type: Urban

The terrain is *Level-Undulating / *Steep-Mountainous.

*Strike through if inapplicable. *Specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey.

Plans used in the preparation of survey/compilation.

7 10110 0000 11	, the proparation	511 01 0 mi 10 ji 0 u .		
DP12210	DP533835	DP1152231	2861-1690	46-1393
DP21802	DP602489	DP1175412	2134-1690	
DP24811	DP712550	DP1180579	2722-1690	
DP25168	DP809828	1793-1690	2724-1690	
DP26205	DP1076546	2147-1690	2596-1690	
DP48401	DP1099608	2149-1690	2796-1690	
DP257195	DP1118938	2557-1690	43-1393	

If space is insufficient continue on PLAN FORM 6A

Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A

Surveyor's Reference: 12218V04

PLAN FORM 6A (2012)

WARNING: Creasing or folding will lead to rejection

DEPOSITED PLAN ADMINISTRATION SHEET

Sheet 2 of 2 Sheet(s)

Office Use Only

ePlan

Office Use Only

Registered:

15.1.2013

DP1181268

PLAN OF ACQUISITION OF LOTS 1 & 2 IN DP533835, LOTS 99 & 335 IN DP753848, PART OF LOTS 108 & 109 IN DP753848, PART LOT 1 IN DP1175412, & PART OF LOT 7008 IN DP1076546

Subdivision Certificate number:

Date of Endorsement:

This sheet is for the provision of the following information as required:

- A schedule of lots and addresses See 60(c) SSI Regulation 2012
- Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919
- Signatures and seals- see 195D Conveyancing Act 1919
- Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.

Lot	Street Number	Street Name	Street Type	Locality
1	NA		Street	North Tamworth
2	NA	Johnston	Street	North Tamworth
3	NA	NA	NA	North Tamworth
4	NA	NA	NA	North Tamworth
5	NA	Johnston	Street	North Tamworth
6	NA	Johnston	Street	North Tamworth
7	NA	NA	NA	North Tamworth
8	NA	NA	NA	North Tamworth
9	NA	Forest	Road	North Tamworth

If space is insufficient use additional annexure sheet

Surveyor's Reference: 12218V04

SEARCH DATE -----23/2/2021 9:03AM

FOLIO: 1/533835

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11118 FOL 235

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
4/7/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
12/12/1995	0760325	TRANSFER	EDITION 1
28/3/1996	0792878	LEASE	EDITION 2
23/6/1998	5074693	SURRENDER OF LEASE	EDITION 3
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

SEARCH DATE 23/2/2021 9:03AM

FOLIO: 1/1181268

First Title(s): VOL 5159 FOL 106 VOL 601 FOL 193

VOL 4517 FOL 90

Prior Title(s): 1-2/533835
335/753848

Recorded	Number	Type of Instrument	C.T. Issue
15/1/2013	DP1181268	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
24/6/2013	АН827345	DEPARTMENTAL DEALING	FOLIO CREATED EDITION 1
23/4/2014	DP1195542	DEPOSITED PLAN	
20/5/2015	AJ356883	TRANSFER GRANTING EASEMENT	EDITION 2
23/5/2017	AM412160	LEASE	EDITION 3
19/7/2018	AN471831	APPLICATION FOR RECORDING OF ACTION AFFECTING CROWN HOLDING	
4/8/2020	AQ294846	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

advlegs

SEARCH DATE -----23/2/2021 9:03AM

FOLIO: 2/533835

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11100 FOL 35

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/6/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
10/5/1989	Y342683	LEASE	EDITION 1
13/1/1998	3726462	LEASE	EDITION 2
9/3/1998	3841863	CHANGE OF NAME	EDITION 3
19/7/1999	5994173	LEASE	EDITION 4
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

FOLIO: 99/753848

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 601 FOL 193

Recorded	Number	Type of Instrument	C.T. Issue
15/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
29/1/1991		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
2/5/1991		AMENDMENT: TITLE DIAGRAM	
2/12/1997	3630592	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 1
13/1/1998	3726462	LEASE	EDITION 2
9/3/1998	3841863	CHANGE OF NAME	EDITION 3
19/7/1999	5994173	LEASE	EDITION 4
8/1/2001	7324434	DEPARTMENTAL DEALING	
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

FOLIO: 335/753848

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 5159 FOL 106

Recorded	Number	Type of Instrument	C.T. Issue
21/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
28/6/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
2/5/1991		AMENDMENT: TITLE DIAGRAM	
7/1/2013	AH466802	DEPARTMENTAL DEALING	
15/1/2013	DP1181268	DEPOSITED PLAN	
24/6/2013	AH622164	REQUEST	FOLIO CANCELLED

*** END OF SEARCH ***

FOLIO: 1/1181268

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 23/2/2021
 9:03 AM
 3
 23/5/2017

LAND

LOT 1 IN DEPOSITED PLAN 1181268
AT NORTH TAMWORTH
LOCAL GOVERNMENT AREA TAMWORTH REGIONAL
PARISH OF TAMWORTH COUNTY OF INGLIS
TITLE DIAGRAM DP1181268

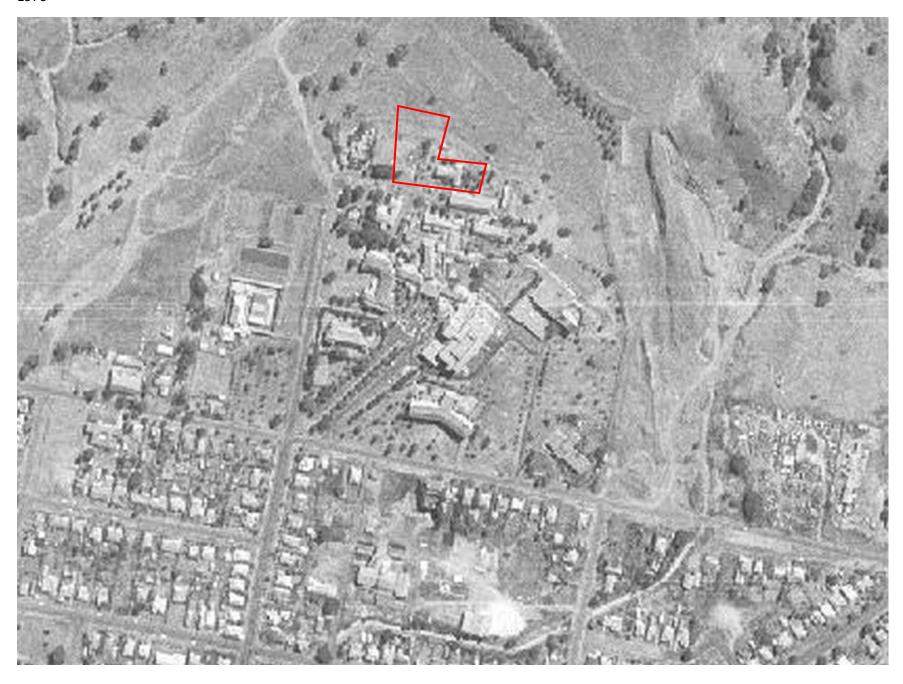
FIRST SCHEDULE

HEALTH ADMINISTRATION CORPORATION

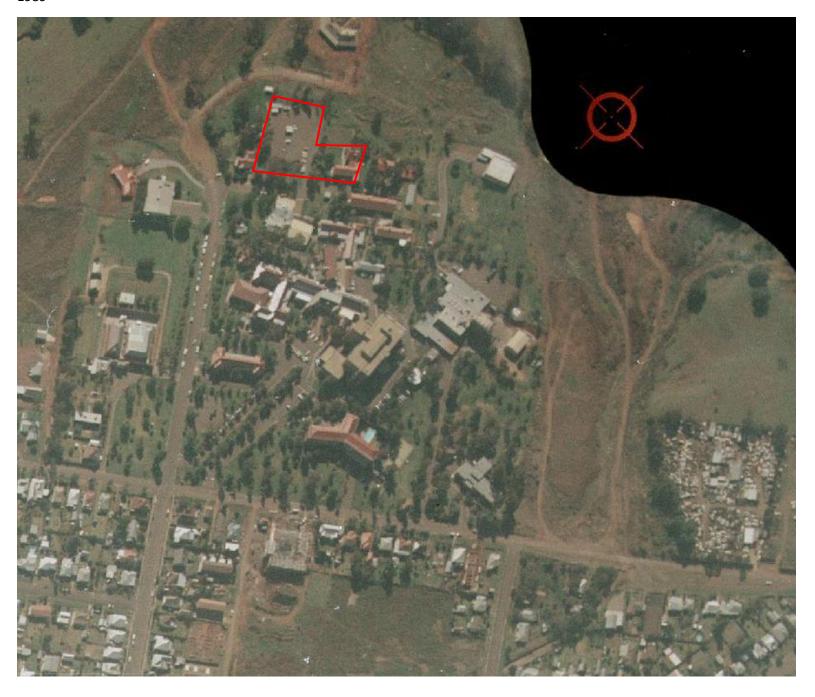
SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS OF THE PART(S) FORMERLY IN LOT 355 IN DP753848, LOT 1 IN DP533835 & LOT 2 IN DP533835
- 2 AJ356883 EASEMENT FOR UNDERGROUND POWER LINES 2 WIDE AFFECTING THE PART SHOWN AS "PROPOSED EASEMENT FOR UNDERGROUND POWER LINES 2 WIDE" IN DP1195542.
- 3 AM412160 LEASE TO HS CATERER PTY LTD OF SHOP 1. CAFE SHOP 2 & CANCER CLINIC SHOP 3, 31 DEAN STREET, TAMWORTH. EXPIRES: 31/5/2021. OPTION OF RENEWAL: 5 YEARS.

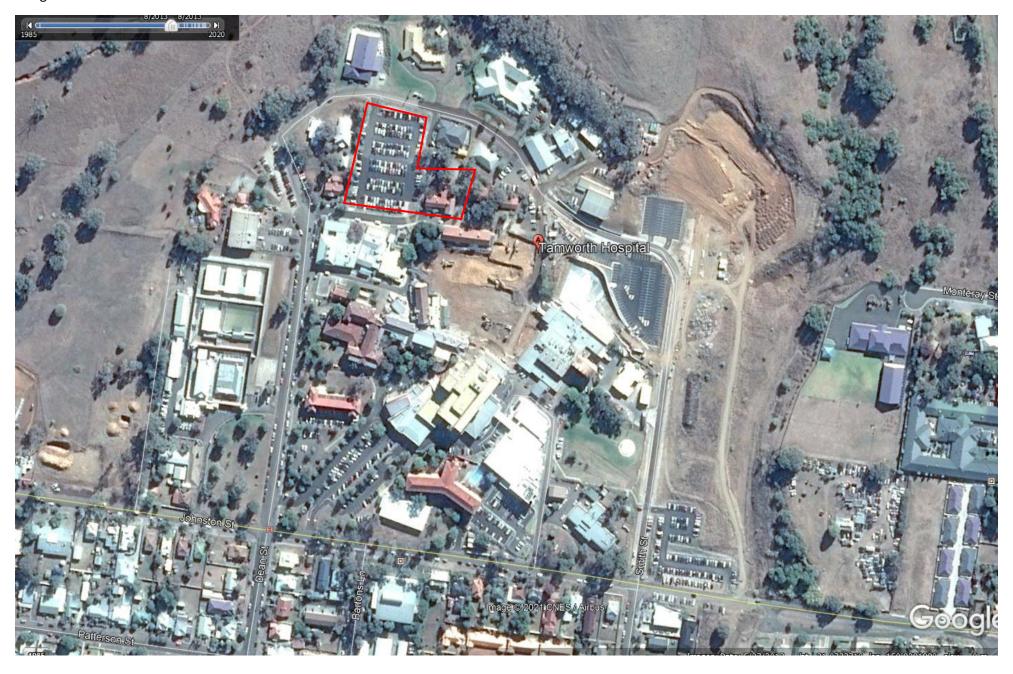
NOTATIONS




NOTE: THIS FOLIO MAY BE ASSOCIATED WITH A CROWN TENURE WHICH IS SUBJECT TO PAYMENT OF AN ANNUAL RENT. FOR FURTHER DETAILS CONTACT CROWN LANDS.


UNREGISTERED DEALINGS: NIL

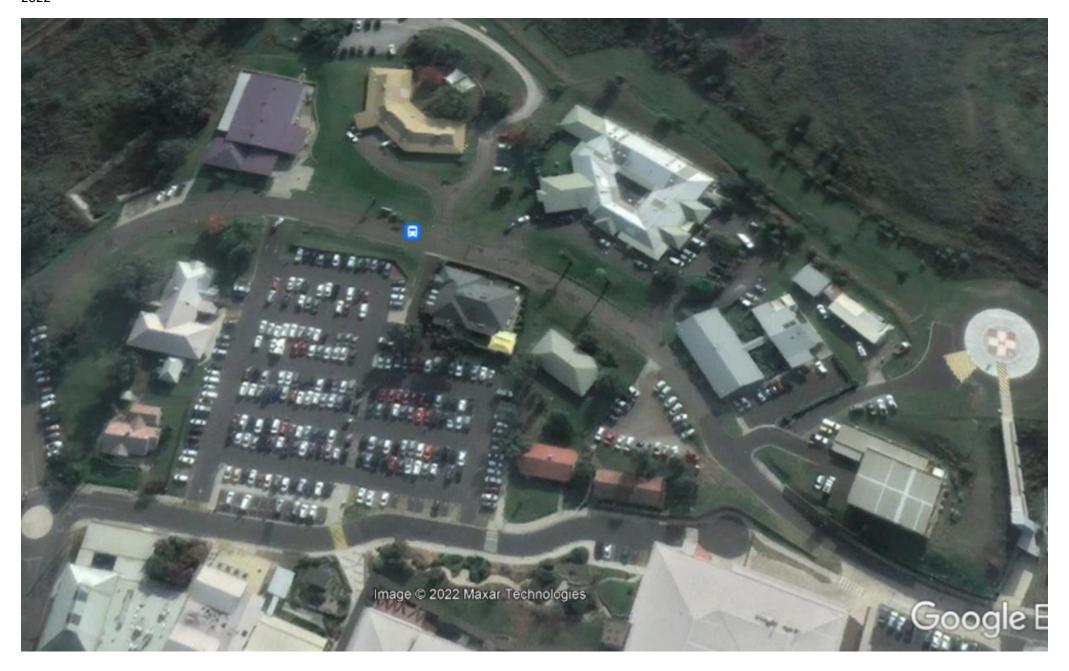
*** END OF SEARCH ***


advlegs



Google Earth 2013

Google Earth 2015



Google Earth 2020

Appendix B Results of Field Investigations

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB1

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig **EASTING**: 301991 m **SURFACE RL**:

		YPE: OLE DIAM		Mounted 100 n		-	EASTING: NORTHING:	301991 6560578		DATU	M:		AHD
	Drill	ing and Sam	pling	1			Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.10m ES		-		GC	**ASPHALT FILL: Sandy Clayey GRAVEL, fine to medi		D	D			WEARING SURFACE FILL-PAVEMENT
	Not Encou	0.40m 0.50m ES SPT 7,5,7 N=12 0.95m		0.5_ - - 1.0_ - - 1.5_		CH	Grained, angular gravel, fine to medium gravel, fine to medium gravel, fine gravel, fine gravel, fine grained, angular, brown		M × W	St - VSt	HP	300 - 350	COLLUVIUM
		2.00m SPT 12,15,22 N=37 2.45m		2.0 - - - - 2.5 - - - 3.0		CI	Gravelly Silty CLAY: Medium plasticity, m red-brown, grey, black, fine to medium grai angular, with ironstone 2.80m Gravelly CLAY: Medium plasticity, mottled red-brown, grey, black, fine to medium grai angular gravel	ned,	M < Wp	H H/Fr	HP HP	550 550	EXTREMELY WEATHERED SILTSTONE
		3.50m SPT 12,20,25 N=45 3.95m		3.5_ - - - - - - -			3.95m Hole Terminated at 3.95 m						
Wat	Wat (Dat Wat	er Level te and time sh er Inflow er Outflow	nown)	4.5	50mm Bulk s Enviro Acid S	Diame ample f	<u>s</u> er tube sample or CBR testing I sample oil Sample	S S F F St S VSt V	ncy ery Soft oft irm tiff ery Stifff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet D W _p Plastic Limit
Stra	ta Cha Gi tra De		ta ,	Field Test PID DCP(x-y) HP	s <u>s</u> Photoi Dynan	onisatio	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	1	riable V L MC D	Lo D D	ery Lo	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure PAGE:

JOB NO: RGS32576.1

BOREHOLE NO: BH-CB2

1 of 1

PROJECT NAME: Car Park B Works
SITE LOCATION: Tamworth Hospital

LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301964 m SURFACE RL:

BOREHOLE DIAMETER: 100 mm		IN	CLINATION: 90° NORTHING:	6560579	m [DATUI	M:		AHD								
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test					
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations				
AD/T	Not Encountered	0.10m ES		-		GC	On the state of th		D	D			WEARING SURFACE FILL-PAVEMENT				
	Not Enco	0.50m 0.60m		0. <u>5</u>		CI	sand, angular gravel CLAY: Medium plasticity, brown, with some fine to medium grained, angular	 e gravel,	M < W _P	Н			COLLUVIUM				
		8,10,17 N=27		- - 1.0			1.00m										
		(0.93111		-			Hole Terminated at 1.00 m										
				1. <u>5</u>													
				-													
				2. <u>0</u> -													
				2.5													
				3.0													
				- -													
				3. <u>5</u>													
				4.0													
				4.5													
				- -													
LEG Wate	END:		<u> </u>	Notes, Sa				1	ery Soft		<2		D Dry				
Y	Wat (Dat Wat	er Level e and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f onmenta	ter tube sample or CBR testing Il sample Soil Sample	F Fi St Si VSt V	oft irm tiff ery Stiff ard		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 100	M Moist W Wet W _p Plastic Limit W _L Liquid Limit				
	ta Cha Gi tra		ata	Field Test PID DCP(x-y) HP	<u>s</u> Photo Dynar	ionisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	1	riable V L MD	Lo	ery Lo		Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%				

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB3

1 of 3

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301948 m SURFACE RL:

DRILL TYPE: Truck Mount BOREHOLE DIAMETER: 100							-	EASTING: CLINATION: 90° NORTHING:	30194 656058		SURF.		ERL: AHD				
ſ		Drill	ing and Sar	npling				Material description and profile information				Fiel	d Test				
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations			
	AD/T	Encountered	0.10m ES		-		GC	One ASPHALT FILL: Sandy Clayey GRAVEL, fine to medit grained, pale brown, fine to coarse grained angular gravel	um sand,	<i></i>				WEARING SURFACE FILL-PAVEMENT			
		Not Enc	0.50m 0.60m 5,9,13 N=22		0. <u>5</u> - - 1. <u>0</u>		CI	O.40m CLAY: Medium plasticity, brown, with some fine grained, angular	gravel,	W V	VSt - H			COLLUVIUM			
2.00.0 2021-06-30			2.00m		1.5 - - - - - 2.0		CI	Gravelly CLAY: Medium plasticity, mottled grey, fine to medium grained angular grave	brown,								
0.03.00.09 Datgel Lab and In Situ Tool - DGD Lib: RG 2.00.32022-03-03 Prj: RG 2.00.0 2021-06-30			SPT 9,13,13 N=26 2.45m		2.5 - - - 3.0			3.10m						High moisture at 2.2m High drilling resistance at 2.6m, possible boulder			
. TEST PIT RGS32576.1 BH-CB LOGS.GPJ < <cre>PrawingFile>> 14/9/2022 13:44 10.03.00.09 Datgel Lab and Incompared Test PIT RGS32576.1 BH-CB LOGS.GPJ <<cre>PrawingFile>> 14/9/2022 13:44 10.03.00.09 Datgel Lab and Incompared Test PIT RGS32576.1 BH-CB LOGS.GPJ <<cre>PrawingFile>> 14/9/2022 13:44 10.03.00.09 Datgel Lab and Incompared Test PIT RGS32576.1 BH-CB LOGS.GPJ <</cre></cre></cre>			3.50m SPT 9,18,25 N=43 3.95m		3.5_ - - - 4.0_ - - 4.5_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CI	Silty CLAY: Medium plasticity, brown, pale grey, with some fine to medium grained and gravel	brown, gular		H/Fr			RESIDUAL			
N-CORED BOREHOLE	Wate	Wat (Dat Wat	5.00m er Level e and time ser Inflow er Outflow	hown)	Notes, Sar U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing al sample Soil Sample	Consist VS S F St VSt H	tency Very So Soft Firm Stiff Very Stif Hard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit			
RG 2.00.3 LIB.GLB Log RG	Stra	tra De	anges radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Fb Density	Friable V L M D	D M	ery Lo oose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%			

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB3

2 of 3

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301948 m SURFACE RL:

1				Mounte		-	CLINATION: O		EASTING:	301948		SURF		RL:	ALID	
		OLE DIAN		1001		IIN	CLINATION: 90		NORTHING:	000000	m L	JATU		d Tost	AHD	
METHOD	WATER	ing and San	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DE	sription and profile SCRIPTION: Soil eristics,colour,mir	type, plasticity		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result Result		re and additional servations
AD/T	Ē	SPT 8,25/110mr N=R 5.26m 5.26m SPT 15,30 N=R 6.80m	n	5.5 6.0 6.5 7.0 7.5 8.0		С	grey, with so gravel (cont		im grained ang		M < Wp	H/Fr	HP	>600		
<u>Wa</u> <u>▼</u>	Wat (Dat - Wat Wat - G - tra	er Level ee and time si er Inflow er Outflow anges radational or ansitional stra efinitive or dis rata change	hown)	9.0 9.0 9.5 9.5 9.5 	mples au 50mm Bulk s. Enviro Acid S Bulk S Photoi Dynan	Diame ample for nmenta sulfate S ample onisationic pene		epth interval show		S So F Fi St St VSt Vo H H	ncy ery Soft oft irm tiff eard iable V L MI D VD	Vi Lc D	25 50 10 20 20 20 ery Lo	n Dense	D M W W _p W _L Density Density Density Density Density	e Condition Dry Moist Wet Plastic Limit Liquid Limit lindex <15% Index 15 - 35% Index 35 - 65% Index 35 - 65% Index 65 - 85% Index 85 - 100%

awingFile>> 14/9/2022 13:47 10:03:00:09 Datgel Lab and In Situ Tool - DGD | Lib: RG 2:00:3 2022-03-03 Prj: RG 2:00:0 2021-06-30

ENGINEERING LOG - CORED BOREHOLE

BOREHOLE NOBH-CB3

Page 3 of 3

RGS32576.1

LD

PAGE:

JOB NO:

LOGGED BY:

RP Infrastructure

PROJECT NAME: Car Park B Works

CLIENT:

Slightly Fractured

200mm to 1000mm

SITE LOCATION: Tamworth Hospital
TEST LOCATION: Refer to Figure 1

DATE: 20/8/22 **DRILL TYPE:** Truck Mounted Drill Rig **EASTING:** 301948 m SURFACE RL: **BOREHOLE DIAMETER:** 100 mm **INCLINATION: 90° NORTHING:** 6560580 m DATUM: AHD Rock Mass Defects Drilling and Sampling Material description and profile information Testing Defect Spacing WEATHERING ESTIMATED STRENGTH GRAPHIC LOG METHOD Defect Description: Type, Material Description: Rock type, DEPTH inclination, planarity, roughness, coating, RQD шш $I_{s(50)}D/A$ RL particle characteristics, colour, (m) minor components, structure thickness 5.5 6.0 6.5 7.0 7.5 8.0 8.5 START CORING AT 8.70m SILTSTONE: Brown, grey, indistinctly bedded HW MW 0 NMLC Highly fractured core, generally jointed with iron staining and clay infilled 20 0 0 LEGEND: Bedding-Hole Terminated at 10.00 m Weathering Strength 4 1 <u>I_{s(50)}</u> <0.1 Defect Type Method Extremely Weathered Very Low Laminated <20mm FW VI JT. Joint WB Wash Bore Thinnly Bedded 20-200mm HW Highly Weathered 0.1 - 0.3 РΤ L Low Parting RRRock Roller Medium Bedded 200-600mm MW Moderately Weathered М Medium 0.3 - 1 SM Seam СВ Claw or Blad Bit Thickly Bedded 600-2000mm SW Slightly Weathered Н High 1 - 3 SZ Shear Zone NMLC NMLC Core Very Thickly Bedded 2000mm FR Fresh VH Very High 3 - 10 CS Crushed Seam NQ,HQ,PQ Wireline Coring Massive No Visible Bedding EΗ Extremely High >10 Degree of Fracturing Roughness Coating **Planarity** Fragmented <20mm VR Very Rough CN Clean ы Planar Highly Fractured 20mm to 40mm RO Rough SN Stained CU Curved Fractured 40mm to 200mm SO Smooth VN Veneer(<1mm) ST Stepped

SL

Slickensided

СО

Coating(1-5mm) IR

Irregular

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB4

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig **EASTING:** 301987 m **SURFACE RL:**

	REH	OLE DIAM	IETER:	Mounted 100 n			CLINATION: 90° NORTHING:	301987 : 6560543		DATU	M:		AHD
	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics, colour, minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.10m ES		- - -		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine to med grained, pale grey, fine to medium grained angular gravel						WEARING SURFACE FILL-PAVEMENT
	Not E	0.50m 0.60m 4,7,11 N=18 0.95m		0. <u>5</u> - - 1. <u>0</u> - -		CI	Silty CLAY: Medium plasticity, mottled bro black, with some fine grained angular grav ironstone		M × W	St - VSt H / Fr	HP	550	COLLUVIUM
		2.00m SPT 6,12,18 N=30 2.45m		1.5							HP	>600	
				3.0 - - 3.5_	x		3.00m Hole Terminated at 3.00 m						
LFG	END:			4.0	mples a	nd Test	s	Consiste	nev		U	CS (kPa	a) Moisture Condition
Wate	Wat (Dat Wat Wat Wat	er Level e and time st er Inflow er Outflow anges radational or ansitional stra	hown)	U₅0 CBR E ASS B	50mm Bulk s Enviro Acid S Bulk S	Diame ample f nmenta ulfate S ample	er tube sample or CBR testing I sample oil Sample in detector reading (ppm)	VS V S S F F St S VSt V	ery Soft fort irm diff ery Stiff lard riable V L	V	25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	_ De	efinitive or dis		DCP(x-y) HP	Dynan	nic pene	etrometer test (test depth interval shown) meter test (UCS kPa)		ME D VD	D	ediun ense ery D	n Dense ense	

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB5

1 of 1

PAGE:

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 302006 m SURFACE RL:

		YPE: OLE DIAN		Mounted 100 m		-	CLINATION: 90° NORTHING:	302006 6560541		DATU		KL.	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encounte	0.10m ES		-		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine to medi grained, pale grey, fine to coarse grained s angular gravel		D	D			WEARING SURFACE FILL-PAVEMENT
	1	0.50m ↓ \$\sqrt{\sq}}}}}}}}}}}}\end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sin}}}}}}}}}}\end{\sqrt{\sqrt{\sqrt{\sint{\sqrt{\sint{\sint{\sint{\sinititi}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	n	0. <u>5</u> - -		CI	Gravelly CLAY: Medium plasticity, brown,	grey	M > W	H / Fr			COLLUVIUM
_				1.0	-0-		1.00m						
				-			Hole Terminated at 1.00 m						
				1. <u>5</u>									
				2.0									
				2. <u>5</u>									
				3. <u>0</u>									
				3. <u>5</u>									
				4.0									
				4. <u>5</u>									
.EG	END:			Notes, Sa	mples a	nd Test	<u> </u>	Consister	псу		<u>U</u> e	CS (kPa) Moisture Condition
_ 	Wat (Dat Wat Wat	er Level e and time si er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing al sample Soil Sample	VS V/S S S S S S S S S S S S S S S S S S	ery Soft oft rm tiff ery Stiff ard riable		25 50 10 20		D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	Gi tra De	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M De	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB6

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 302023 m SURFACE RL:

			YPE: OLE DIAN		Mounted 100 n		-		TING: RTHING:	302023 6560534		SURF/		RL:	AHD
İ		Drill	ing and Sai	mpling				Material description and profile info	rmation				Fiel	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil typ characteristics,colour,minor c			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	AD/T	Not Encountered	0.10m ES 0.50m		- - 0. <u>5</u>		GC	FILL: Sandy Clayey GRAVEL, fir grained, pale grey, fine to mediur angular gravel Silty CLAY: Medium plasticity, re	n grained	sand,	D	D H/Fr			WEARING SURFACE FILL-PAVEMENT (Base and Subbase) COLLUVIUM
		Z	0.60m 9,11,14 N=25 1.99H U 1.20m	-	1.0_ - - - - - - 1.5_		5	some gravel, fine grained, angula	r	grey, willi	M < Wp		HP	>600	
10.03.00.09 Datgel Lab and In Situ Tool - DGD Lib: RG 2.00.3.2022-03-03 Prj; RG 2.00.0.2021-06-30			2.60m SPT 5,9,12		2.0 - - - - 2.5 -		CI	Silty CLAY: Medium plasticity, br gravel, fine to medium grained, a	own, with ngular	some		Н	HP	500	
d In Situ Tool			N=21 3.05m		3.0	X		3.05m Hole Terminated at 3.05 m					HP	550	
RGS32576.1 BH-CB LOGS.GPJ < <drawingfile>> 14/9/2022 13:45</drawingfile>		ENIT			3.5 - - - - 4.0 - - - - - - - - - - - - - - - - - - -					Consists				OS (I-P	Maintura Condition
RG 2,00.3 LIB.GLB Log RG NON-CORED BOREHOLE - TEST PIT	Wate	Wat (Dat Wat I Wat ta Cha tra — G	er Level e and time s er Inflow er Outflow anges radational or ansitional str efinitive or di rata change	shown) , ata	U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro Acid S Bulk S Photoi Dynan	Diamei ample fi nmenta ulfate S ample onisatio	er tube sample or CBR testing I sample oil Sample oil detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		S S F Fi St S VSt V	ery Soft oft irm tiff ery Stiff ard riable V L ME D VD	Vi Lc D M	25 50 10 20 20 20 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT:

RP Infrastructure PAGE:

BOREHOLE NO: BH-CB7

1 of 1

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 302023 m SURFACE RL:

			YPE: OLE DIAM		Mounted 100 n		-		TING: THING:	302023 6560509		SURF.		RL:	AHD
Γ		Drilli	ing and Sa	mpling				Material description and profile info	rmation				Fiel	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor co			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	AD/T	Encountered	0.10m ES		- - -		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fin grained, pale grey, fine to mediun angular gravel			D	D			WEARING SURFACE FILL-PAVEMENT
		Not	0.50m SPT 24,25 N=R 0.80m		0. <u>5</u>		CI	CLAY: Medium plasticity, red-brogravel, fine grained, angular	vn, with so	ome	M < W _P	H/Fr			COLLUVIUM
10.03.00.09 Datgel Lab and In Situ Tool - DGD Lib: RG 2.00.3.2022-03-03 Prj; RG 2.00.0.2021-06-30 		16	2.60m SPT 25,25/100i N=R	- -	2.0 - - - - 2.5 -		CI	Gravelly CLAY: Medium plasticity to medium grained, angular grave	, grey, bro	own, fine					
RGS32576.1 BH-CB LOGS.GPJ < <drawingfile>> 14/9/2022 13:45</drawingfile>			3.00m		3.0 			Hole Terminated at 3.00 m							
RG 2.00.3 LIB.GLB Log RG NON-CORED BOREHOLE - TEST PIT	Wate	Wate (Dat Wate Wate ta Cha Gr tra	er Level e and time s er Inflow er Outflow anges radational or unsitional strefinitive or d rata change	shown) . <u>!</u> ata istict	U ₅₀ CBR E ASS B Field Test PID CCP(x-y) HP	50mm Bulk s Enviro Acid S Bulk S Bulk S	Diame ample formenta Sulfate S sample conisation	ser tube sample or CBR testing I sample I sample ioil Sample on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		S S F F St S VSt V H H	rery Soft oft irm tiff ery Stiff ard riable V L MC D VD	V Le D M	25 50 10 20 20 20 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB8

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 302008 m SURFACE RL:

	REH	OLE DIAN		Mounted 100 n		-	EASTING: CLINATION: 90° NORTHING:	302008 6560513		DATU		NL.	AHD
	Drilli	ng and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			-		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine to medigrained, pale grey, fine to medium grained angular gravel		D	D			WEARING SURFACE FILL-PAVEMENT
	Not	0.60m		0. <u>5</u> -		CI	CLAY: Medium plasticity, red-brown, with s gravel, fine grained, angular	ome	M < W _P	Н	HP	>600	COLLUVIUM
		SPT 10,20,25 N=45		1.0			1.00m Hole Terminated at 1.00 m						
		1.05m		-			Hole Terminated at 1.00 m						
				1. <u>5</u>									
				2. <u>0</u>									
				-									
				2. <u>5</u>									
				3.0									
				-									
				3. <u>5</u>									
				4.0									
				-									
				4.5									
				-									
	END:		<u> </u>	Notes, Sa	mples a	nd Tes	<u>s</u>	Consister VS V	i cy ery Soft	1	<u>U</u> (CS (kPa 25	Moisture Condition D Dry
Wate	_	er Level		U₅o CBR			ter tube sample or CBR testing	s s	oft rm		25	5 - 50 0 - 100	M Moist W Wet
-	•	e and time s er Inflow	hown)	E	Enviro	onmenta	l sample	St S	tiff		10	0 - 200	W _p Plastic Limit
-	Wate	er Outflow	'	ASS B		Sulfate S Sample	soil Sample	н н	ery Stiff ard			00 - 400 100	W _L Liquid Limit
Strat	t a Cha Gr	inges adational or		Field Test	<u>s</u>			Fb Fi	riable V		ery Lo	ose	Density Index <15%
	tra De	nsitional stra efinitive or dis ata change	ata	PID DCP(x-y) HP	Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L MC D VD) M De	oose ediun ense ery De	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NO: BH-CB9

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 20/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301989 m SURFACE RL:

		YPE: OLE DIAN		Mounted: 100 n		-	CLINATION: 90°	EASTING: NORTHING:	301989 6560515		SURF/ DATU		RL:	AHD
	Drill	ing and Sar	npling				Material description and pr	ofile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: characteristics,colour			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.50m SPT 9,10,12 N=22		- - 0. <u>5</u> - - -		GC	ASPHALT FILL: Sandy Clayey GRA grained, grey, fine to med gravel CLAY: Medium to high pl some gravel, fine grained	lium grained sand asticity, red-brown , angular	, angular 	D	D	HP HP		WEARING SURFACE FILL-PAVEMENT COLLUVIUM
		0.95m		1.0			Hole Terminated at 0.95	m						
Wate	Wat (Dat Wat Wat	er Level e and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S Bulk S	Diame ample f nmenta	s ter tube sample or CBR testing Il sample ioil Sample		S Solver St St St VSt Vot H H:	ery Soft oft rm tiff ery Stiff ard riable		25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	tra — De	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval si meter test (UCS kPa)	nown)	<u>Density</u>	V L ME D VD	Lo D M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure PAGE:

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NOBH-CB10

1 of 1

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301980 m SURFACE RL:

					-	EASTING: CLINATION: 90° NORTHING			-		RL:	AHD
Dri	illing and Sa	mpling				Material description and profile information				Fiel	d Test	
WATER	SAMPLES	RL (Not measured)	(m)	GRAPHIC LOG	CLASSIFICATION SYMBOL			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Not Encountered	3.00m SPT 23,25,30 N=55 1.95m 3.7100mm N=R 3.10m		1.5		GC CI	Silty CLAY: Medium plasticity, mottled brush with some gravel, fine to medium grained. 2.70m Gravelly CLAY: Medium plasticity, pale b fine to medium grained angular gravel	own, grey, angular	D dw > W	D H/Fr	HP	>600	WEARING SURFACE FILL-PAVEMENT COLLUVIUM
water Wa (Da Wa Wa Wa Trata Ch ti	ater Level ate and time s ater Inflow ater Outflow nanges Gradational o	shown)	U₅0 CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro Acid S Bulk S S Photoi Dynan	Diame ample f nmenta ulfate S ample onisationic pene	ter tube sample or CBR testing al sample Soil Sample on detector reading (ppm) etrometer test (test depth interval shown)	VS S F St VSt H	Very Soft Soft Firm Stiff Very Stiff Hard Friable V L ME	Vo Lo D M	50 10 20 20 20 ery Loose	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	GEND Water Control of the Control of	Drilling and Sa SAMPLES SAMPLES 1.50m SPT 23,25,30 N=55 1.95m 3.00m SPT 30/100mm N=R 3.10m 3.10m 4 Water Level (Date and time seem of the see	Drilling and Sampling SAMPLES RL Not measured	Drilling and Sampling SAMPLES RL (Not measured) DEPTH (m)	Drilling and Sampling SAMPLES RL Not Male Not Not	Drilling and Sampling SAMPLES RL (Not measured) MOLTOGRAW MOLTOGRA	DREHOLE DIAMETER: 100 mm INCLINATION: 90° NORTHING Drilling and Sampling Material description and profile information R	DREHOLE DIAMETER: 100 mm INCLINATION: 90° NORTHING: 656050 Drilling and Sampling Material description and profile information Material description and profile information Material description and profile information	DREHOLE DIAMETER: 100 mm INCLINATION: 90° NORTHING: 6560506 m Material description and profile information	DREHOLE DIAMETER: 100 mm INCLINATION: 90° NORTHING: 6560506 m DATU	DREHOLE DIAMETER: 100 mm INCLINATION: 90° NORTHING: 6560506 m DATUM: Drilling and Sampling Material description and profile information Field	Defining and Sampling

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NOBH-CB11

1 of 1

PAGE:

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301961 m SURFACE RL:

					Mounted		-	OLINATION: 00°	EASTING:	301961		SURF		RL:	ALID
Ľ			OLE DIAN		100 H	ım	IN	CLINATION: 90°	NORTHING:	0000010	m L	DATUI		d Test	AHD
		WATER	ing and Sar	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Material description and pro MATERIAL DESCRIPTION: S characteristics,colour,r	Soil type, plasticity		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Ę	AD	Not Encountered	0.40m		- - -		GC	ASPHALT FILL: Sandy Clayey GRA\ grained, pale grey, fine to a angular gravel	medium grained	sand, 	D	D			WEARING SURFACE FILL-PAVEMENT
		Not I	0.50m 0.60m ES B		0. <u>5</u> - -		CI	Sandy CLAY: Medium pla some gravel, fine grained, grained sand			M < W _P	H/Fr			COLLUVIUM
\vdash	+		1.00m		1.0			Hole Terminated at 1.00 m	1						
			1.50m		- - 1. <u>5</u>										
0.502 1-06-30			SPT 23,25,30 N=55		2. <u>0</u>										
122-03-03 Ptj. RG 2.vv.					- - -										
NU.US.VU.US Datger Lab and In Sifu Tool - DGDT L.I.D.: PGS Z.VU.3 Z.VZZ-V3-V3 PTj; PG Z.VU.U Z.XZ-V6-SU					2. <u>5</u> - - -										
lei Lab and III oltu 1001 -			3.00m SPT 30/100mm N=R 3.10m		3.0										
					3. <u>5</u> -										
fawirgh ire/~ introduced					4. <u>0</u>										
IEDI PITI RGSSZS76:1 BH-CB LUGS.GFJ < <l></l> LUGS.GFJ < <liaming*ib>> 14/9/ZUZZ 15/45</liaming*ib>					4. <u>5</u>										
10000201					-										
	EGE			<u> </u>	Notes, Sa	mples a	nd Test	<u>s</u>		Consister VS Vo	ncy ery Soft		<u>U(</u>	CS (kPa	Moisture Condition D Dry
() .	_	Wate (Dat Wate	er Level e and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro	ample f nmenta ulfate S	ter tube sample or CBR testing I sample ioil Sample		S So F Fi St St VSt Vo	oft rm tiff ery Stiff ard		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
100 Kg		a Cha	nges		Field Test		ample			I .	iable V	Ve	ery Lo		Density Index <15%
RG 2.00.3 LIB. GLD		tra De	radational or insitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	– Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval sho meter test (UCS kPa)	own)		L ME D VD	Lo M De	ose	n Dense	Density Index 15 - 35%

CLIENT:

RP Infrastructure PAGE:

BOREHOLE NOBH-CB12

1 of 1

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301936 m SURFACE RL

		YPE: OLE DIAN		Mounted		-	EASTING: CLINATION: 90° NORTHING	301936 : 6560519		SURF/		RL:	AHD
		ling and San					Material description and profile information					d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.50m		- - 0.5_		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine to med grained, pale grey, fine to medium grained angular gravel Sandy CLAY: Medium to high plasticity, g trace gravel, fine grained, angular	I sand, 	D a w v	D St	HP		WEARING SURFACE FILL-PAVEMENT COLLUVIUM
		SPT 4,2,3 N=5 		1.0 - -			1.30m				HP	140	
				1. <u>5</u> - -			Hole Terminated at 1.30 m						
				2.0 - - - 2.5									
				3.0									
				3. <u>5</u>									
				4.0									
				4. <u>5</u>									
LEG Wat		er Level		Notes, Sa U ₅₀ CBR	50mm	Diame	ts ter tube sample for CBR testing	s s	ency Very Soft Soft Firm	:	<2 25	CS (kPa) 25 5 - 50 0 - 100	Moisture Condition D Dry M Moist W Wet
	Wat Wat ta Ch a	te and time sl ter Inflow ter Outflow anges	hown)	E ASS B	Enviro Acid S Bulk S	nmenta ulfate S	of Cart testing al sample Soil Sample	St St VSt V	Stiff Very Stiff Hard Friable V		10 20	00 - 200 00 - 400 400	W _p Plastic Limit W _L Liquid Limit Density Index <15%
	tra D	radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	20.70119	L ME D VD	Lo D D	ose	n Dense	Density Index 15 - 35%

CLIENT:

RP Infrastructure PAGE:

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NOBH-CB13

1 of 3

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301950 m SURFACE RL:

		TYPE:		Mounted		•	EAST CLINATION: 90° NORT		301950 6560338		SURF		RL:	AHD
۲		ling and Sam		10011	····		Material description and profile inform		0000000				d Test	ALID
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, characteristics, colour, minor co	plasticity	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.95m 0.10m ES 0.30m 0.40m 0.50 SPT 5,10,4 N=14		0.5 - - - 1.0 -		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine grained, grey, fine to medium grain gravel Gravelly CLAY: Medium plasticity,	ed sand,	, angular - — — <i>—</i> ∕	D W _P	VSt	HP HP		WEARING SURFACE FILL-PAVEMENT COLLUVIUM
0.03.00.09 Dange Lab and In Stu Tod - DGD Ltb: RG 2.00.3.2022-03-03 Pr; RG 2.000.0.227-06-30		2.00m SPT 10,12,13 N=25 2.45m		1.5		CI	Gravelly CLAY: Medium plasticity, red-brown, pale brown	mottled		M < Wp	VSt - H			
FIT ROSSZSON, BH-CE LUGS, GF7 < CLARWINGFIRS> 14/9/2022 13-43 10.05/00/9 Dagget, EAS		3.50m SPT 12,17,22 N=39 3.95m		3.5 - - 4.0 - - - - - -		CI	4.00m Gravelly CLAY: Medium plasticity, fine to medium grained, angular gr	- — — pale gre avel	ey, brown,		H/Fr	HP		EXTREMELY WEATHERED SILTSTONE
TE WWCOKED BOKEHOLE - IEST	(Da — Wa ■ Wa rata Ch — tr	ter Level te and time sh ter Inflow ter Outflow	nown)	U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro Acid S Bulk S S Photoi Dynan	Diame ample formenta sulfate S ample conisation	ter tube sample or CBR testing al sample Soil Sample on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		S So F Fi St St VSt Vo H H	ncy ery Soft oft rm tiff ery Stiff ard iable V L MC D VD	V La D M	25 50 10 20 >2 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT:

PAGE:

BOREHOLE NOBH-CB13

2 of 3

PROJECT NAME: Car Park B Works JOB NO: RGS32576.1

SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 **DATE:** 21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301950 m SURFACE RL:

RP Infrastructure

		YPE: OLE DIAN		Mounted : 100 n		-	EASTING: CLINATION: 90° NORTHING:	301950 6560338		DATU		KL:	AHD
	Drilli	ng and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	SPT 25/50mm N=R 5.05m		5. <u>5</u> - - - 6. <u>0</u>		CI	Gravelly CLAY: Medium plasticity, pale grafine to medium grained, angular gravel (co		M < Wp	H / Fr			
				6.5			Continued as Cored Drill Hole						
Wate	Wate (Date Wate Wate	er Level e and time sl er Inflow er Outflow unges radational or	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S Bulk S	Diame ample f onmenta sulfate S ample	ter tube sample or CBR testing I sample ioil Sample	S S F Fi St S VSt V H H	ery Soft oft rm tiff ery Stiff ard riable V	V	25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W _P Plastic Limit W _L Liquid Limit Density Index <15%
_	_ De	nsitional stra efinitive or dis ata change		PID DCP(x-y) HP	Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L ME D VD) M D	oose edium ense ery De	n Dense ense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - CORED BOREHOLE

RP Infrastructure

PROJECT NAME: Car Park B Works

Tamworth Hospital SITE LOCATION: **TEST LOCATION:** Refer to Figure 1

CLIENT:

JOB NO:

Page 3 of 3 RGS32576.1

21/8/22

LOGGED BY: LD

BOREHOLE NOBH-CB13

301950 m SURFACE RL:

PAGE:

DATE:

DRILL TYPE: Truck Mounted Drill Rig **EASTING:**

		OLE DI	AMETE		0 mm INCLINATION:	: 90°	NOR1		6560338		DAT	UM:	AHD	
D	rilling a	and Sam	pling		Material description	and profile information			Testing			Rock Ma	ss Defects	
METHOD	WATER	RL Not measured	DEPTH (m)	GRAPHIC LOG	Material Description particle characteris minor component	stics, colour,	WEATHERING	ESTIMATED STRENGTH	I _{s(50)} D/A	RQD %	Defect Spacing mm	ind	ct Description clination, plar ughness, coa thickness	narity, ating,
			5. <u>5</u> - - - - 6.0_											
			-	V V V	START CORING AT 6.40m							,		
			6. <u>5</u> -	× × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey, indisti	inctly bedded	MW	L		0				
NMLC			7.0_ - - -	××××××××××××××××××××××××××××××××××××××						0	20	general	ractured core ly jointed with and clay sea	iron
			7.5	^ ^ ^	Hole Terminated at 7.40 m									
			8.0											
			8. <u>5</u> -											
			9. <u>0</u> -											
			9.5 <u> </u>											
Met WB RR CB NMI	LC	Wash E Rock R Claw o NMLC Wirelin	toller r Blad Bit Core	Mediui Thickly	ated <20mm y Bedded 20-200mm m Bedded 200-600mm y Bedded 600-2000mm Thickly Bedded 2000mm	Weathering EW Extremely We HW Highly Weath MW Moderately W SW Slightly Weath FR Fresh	ered eathered	Stre VL L M H VH EH	ngth Very Lov Low Medium High Very Hig	jh	0.3 1 - 3 -	1 J - 0.3 P - 1 S 3 S	T Parting M Seam Z Shear	
LEG Met WB RR CB NMI NQ,				Fragm Highly Fractu	Fractured 20mm to 40mm			Rou VR RO SO SL	ghness Very Ro Rough Smooth Slickens		Coatin CN SN VN CO	ng Clean Stained Veneer(< Coating(1	,	rity Planar Curved Stepped Irregular

CLIENT:

RP Infrastructure PAGE:

BOREHOLE NOBH-CB14

1 of 1

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301965 m SURFACE RL:

		YPE: OLE DIAM		Mounted		-	EASTING: CLINATION: 90° NORTHING:	301965 6560528		SURF/		RL:	AHD
<u> </u>		ling and Sar		10011			Material description and profile information	0000020				d Test	7110
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.10m ES 0.50m SPT 12,13,15 N=28 0.95m 2.60m SPT 18,25/100m N=R 3.00m	m	0.5 - - - - - - - - - - - - - - - - - - -			ASPHALT FILL: CLAY, medium plasticity, brown, with gravel, fine grained, angular Silty CLAY: Medium plasticity, brown, pale grey 3.00m Hole Terminated at 3.00 m	i	M < Wp	H H/Fr		 	WEARING SURFACE FILL COLLUVIUM
Wat	Wat (Da Wat	ter Level te and time si ter Inflow ter Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro	Diame ample f nmenta	ts Iter tube sample for CBR testing al sample Soil Sample	S S S S S S S S S S S S S S S S S S S	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VE	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

RP Infrastructure

PAGE: 1 of 1 JOB NO: RGS32576.1

PROJECT NAME: Car Park B Works

CLIENT:

LOGGED BY: LD

BOREHOLE NOBH-CB15

SITE LOCATION: Tamworth Hospital **TEST LOCATION:** Refer to Figure 1 DATE: 21/8/22

DRILL TYPE: Truck Mounted Drill Rig **EASTING:** 301975 m SURFACE RL:

		YPE: OLE DIAN		Mounted : 100 n				EASTING: NORTHING:	301975 6560525		SURF/ DATU		KL:	AHD
	Drill	ing and Sar	npling				Material description and profil	e information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: So characteristics,colour,mi	il type, plasticity nor component:	/particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountere	0.10m 0.20m ES 0.50m SPT 4,5,7 N=12 0.95m		1.0 			ASPHALT 30mm ASPHALT 80mm CLAY: Medium to high plast gravel, fine to medium grain Hole Terminated at 1.00 m		n, with	M > Wp	St- VSt			WEARING SURFACE Two layers of asphalt coating COLLUVIUM
Wat ▼	Wat (Dat Wat Wat ta Cha tra	er Level e and time s er Inflow er Outflow anges radational or ansitional stra efinitive or di rata change	hown)	4.5	50mm Bulk s Enviro Acid S Bulk S Photoi Dynan	Diamei ample fonmenta Sulfate S sample conisationic pene	s er tube sample or CBR testing I sample oil Sample oil Sample in detector reading (ppm) etrometer test (test depth interval show	vn)	S So F Fi St St VSt Ve H Ha	ery Soft oft rm	Vi Lc D M	25 50 10 20 >2 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT:

RP Infrastructure PAGE:

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

BOREHOLE NOBH-CB16

1 of 3

SITE LOCATION:Tamworth HospitalLOGGED BY:LDTEST LOCATION:Refer to Figure 1DATE:21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301981 m SURFACE RL:

		TYPE: IOLE DIAN		Mounted 100 n		-	EASTING: CLINATION: 90° NORTHING:	301981 6560551		SURF.		RL:	AHD
	Dri	lling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.05m		-		GC	ASPHALT FILL: Sandy Clayey GRAVEL, fine to medi grained, pale brown	um /					WEARING SURFACE Two layers of asphalt coating FILL-PAVEMENT
	Not Encor	0.50m ES SPT 4,6,12 N=18		0. <u>5</u> - - -	X X 2 	CH	CLAY: Medium to high plasticity, grey-brow some gravel, fine grained, angular	 n, with	M < W _P	St - VSt	HP HP	350 350	COLLUVIUM
		1:99M		1.0_ - - - 1.5_			1.50m Sandy CLAY: Medium plasticity, mottled re		-	H/Fr			
rj: RG 2.00.0 2021-06-30	9	2.00m SPT ,17,25/100m	Im	2. <u>0</u>			brown, grey, fine to medium grained sand, gravel, fine to medium grained, angular	with some			HP	>600	
DGD Lib: RG 2.00.3 2022-03-03 P		N=R 2.40m		- 2. <u>5</u> - - -									
and In Situ Tool -				3.0			3.00m Continued as Cored Drill Hole						
16 10.03.00.09 Datgel Lab				3. <u>5</u>									
< LorawingHile>> 14/9/2022 13:4				4. <u>0</u>									
RGS32576.1 BH-CB LUGS.GFJ				4.5_ - -									
Ma Ma	Wa (Da	ter Level te and time s	hown)	U ₅₀ CBR E ASS	50mm Bulk s Enviro	Diame ample f	ts ter tube sample or CBR testing al sample Soil Sample	S S F F St S	ncy Yery Soft Soft Firm Stiff Yery Stiff		<2 25 50 10	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400) Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _i Liquid Limit
o l	● Wa ata Ch tr D	ter Outflow nanges Gradational or ransitional stra Definitive or di trata change	<u>!</u> ata ,	Field Test PID DCP(x-y) HP	Bulk S ss Photoi Dynan	ample onisationic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	н н	lard riable V L ME D VD	V Lo D M	ery Lo	oose n Dense	Density Index <15% Density Index 15 - 35%

ENGINEERING LOG - CORED BOREHOLE

RP Infrastructure

PROJECT NAME: Car Park B Works

SITE LOCATION: Tamworth Hospital

TEST LOCATION: Refer to Figure 1

DRILL TYPE: Truck Mounted Drill Rig

CLIENT:

DATE: 301981 m SURFACE RL:

PAGE:

JOB NO:

LOGGED BY:

BOREHOLE NOBH-CB16

Page 2 of 3

RGS32576.1

LD

21/8/22

EASTING:

		YPE: OLE DI		uck Mounted R: 100 mm		: 90°	EAST NORT		301981 6560551		SURF.	ACE RL: M: A	.HD
D	rilling	and Sam	pling		Material description	and profile information	1		Testing			Rock Mass I	Defects
METHOD	WATER	RL Not measured	DEPTH (m)	GRAPHIC LOG	Material Description particle characterisminor component	stics, colour,	WEATHERING	ESTIMATED STRENGTH	I _{s(50)} D/A	RQD %	Defect Spacing mm	inclina rough	escription: Type, tion, planarity, ness, coating, hickness
			0.5 - 1.0 1.5 - 2.0 - 2.5										
NMLC			3.5 3.5 4.0 4.5	COL	RT CORING AT 3.00m LUVIAL SOIL: Gravelly Corown, pale brown, fine to lar					100			
Met WB RR CB NM	LC	Wash B Rock R Claw or NMLC Wirelin	toller r Blad Bit Core	Bedding Laminated Thinnly Bedde Wedium Bedde Very Thickly Bedde Very Thickly E Massive Degree of Fra Fragmented Highly Fractur Fractured	led 200-600mm ed 600-2000mm Bedded 2000mm No Visible Bedding acturing <20mm	Weathering EW Extremely HW Highly Wea MW Moderately SW Slightly We FR Fresh	thered Weathered	VL L M H VH EH	ngth Very Low Low Medium High Very Hig Extreme ghness Very Rou Rough Smooth	jh ly High	L _{s(50)} <0.1 0.1 - 0.3 - 1 - 3 3 - 10 >10 Coating CN SN VN	0.3 PT 1 SM SZ 0 CS	zt Type Joint Parting Seam Shear Zone Crushed Seam Planarity PL Planar CU Curved ST Stepped

CLIENT:

ENGINEERING LOG - CORED BOREHOLE

RP Infrastructure PAGE: PROJECT NAME: Car Park B Works JOB NO:

BOREHOLE NOBH-CB16

Page 3 of 3

RGS32576.1

SITE LOCATION: Tamworth Hospital LOGGED BY: LD **TEST LOCATION:** Refer to Figure 1 DATE: 21/8/22

DRILL TYPE: Truck Mounted Drill Rig **EASTING:** 301981 m SURFACE RL:

		YPE: OLE DI	Tr AMETE		ounted Drill 0 mm	I Rig INCLINATION	: 90°		EAST NORT		301981 6560551		SUR	FACE F JM:	R L : AH	D	
<u> </u>		and Sam				Material description	and profile	e information			Testing				Mass Det	fects	
METHOD	WATER	RL Not measured	DEPTH (m)	GRAPHIC LOG		Material Descriptio particle characteri minor componen	stics, colo	ur,	WEATHERING	ESTIMATED STRENGTH	I _{s(50)} D/A	RQD %	Defect Spacing mm	D	efect Des inclinatio roughne thic	n, plana	rity,
NMLC			5. <u>5</u>		red-brown, angular (co	AL SOIL: Gravelly C pale brown, fine to ontinued)	CLAY, med medium g	dium plasticity, grained gravel,				100					
			6.0_ - - - 6.5_		Hole Termi	inated at 5.90 m											
			7.0 - -														
			7. <u>5</u> - -														
_			8.0 - - -														
			8. <u>5</u> - -														
5			9.0_ - - - 9.5_														
LEC	SEND:		- - -	Beddi			Weather				ngth		<u>l_{s(50}</u>	1	Defect 1		
Met WB RR CB NMI NQ,	LC	Wash I Rock R Claw o NMLC Wirelin	Roller r Blad Bit Core	Mediui Thickly	y Bedded m Bedded y Bedded 'hickly Bedded	<20mm 20-200mm 200-600mm 600-2000mm d 2000mm No Visible Bedding	EW HW MW SW FR	Extremely Wea Highly Weather Moderately We Slightly Weathe Fresh	ed athered	VL L M H VH EH		gh	<0. 0.1 0.3 1 - 3 -	1 - 0.3 - 1 3 10	PT SM SZ	Joint Parting Seam Shear Zo Crushed	
				Fragm Highly Fractu	Fractured	ng <20mm 20mm to 40mm 40mm to 200mm 200mm to 1000mm				Rou VR RO SO SL	ghness Very Ro Rough Smooth Slickens		Coatin CN SN VN CO	Clean Stained Venee	d r(<1mm) g(1-5mm)	Planari PL CU ST IR	t y Planar Curved Stepped Irregular

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works **JOB NO:** RGS32576.1

PAGE:

BOREHOLE NOBH-CB17

1 of 1

LD

SITE LOCATION: Tamworth Hospital LOGGED BY:

TEST LOCATION: Refer to Figure 1 **DATE:** 21/8/22

DRILL TYPE: Truck Mounted Drill Rig EASTING: 301989 m SURFACE RL:

		YPE: OLE DIAN		Mounted 100 n		-	EASTING: CLINATION: 90° NORTHING:	301989 6560515		DATU		KL:	AHD
	Dril	ling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.40m		- - -			O.0.3307 ASPHALT FILL: Sandy Clayey GRAVEL, fine to coars grained, pale grey, fine to medium grained angular gravel	sand, <i>-</i>					WEARING SURFACE FILL-PAVEMENT COLLUVIUM
	Not E	0.50m ES SPT 4,4,6		0. <u>5</u> -	* — - * - * - *	CI	Silty CLAY: Medium plasticity, mottled grewith some gravel, fine grained, angular	y, brown,	M > W _P	St	HP HP	220 250	COLLOVIOM
		N=10 0.95m		1. <u>0</u>	<u></u>		0.95m Hole Terminated at 0.95 m						
				-									
				1. <u>5</u> -									
				2.0									
				-									
				2. <u>5</u> -									
				3.0									
				-									
				3. <u>5</u> - -									
				4.0									
				-									
				4. <u>5</u> -									
.EG	END:			Notes, Sa	mples a	nd Test	<u>s</u>	Consiste				CS (kPa	-
Vate	Wat (Da Wat	ter Level te and time s	hown)	U₅0 CBR E ASS	Bulk s Enviro Acid S	ample f nmenta ulfate S	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V	ery Soft oft irm tiff ery Stiff		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	P
- d		ter Outflow anges		В	Bulk S	ample			lard riable		>4	100	
- ual	G tra D	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D D	ery Lo cose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

RP Infrastructure

PROJECT NAME: Car Park B Works JOB NO: RGS32576.1

BOREHOLE NOBH-CB18

1 of 1

PAGE:

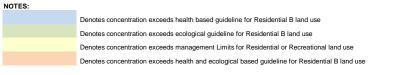
SITE LOCATION: Tamworth Hospital LOGGED BY: LD

TEST LOCATION: Refer to Figure 1 DATE: 21/8/22

DRILL TYPE:	Truck Mounted Drill Rig	EASTING:	SURFACE RL:
-------------	-------------------------	----------	-------------

		YPE: OLE DIAN		Mounted 100 n		-	CLINATION: 90°	EASTING: NORTHING:			SURF/ DATUI		RL:	AHD
	Drill	ing and Sar	npling				Material description ar	nd profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTI characteristics,co	ON: Soil type, plasticity olour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	untered	0.05m 0.10m ES		-		GC	ASPHALT FILL: Sandy Clayey grained pale grey fit	GRAVEL, fine to mediune to mediune to medium grained s	um sand	D	D			WEARING SURFACE FILL-PAVEMENT
	Not Encountered	0.50m		0. <u>5</u>		СН	angular gravel Gravelly CLAY: Med	 lium to high plasticity, r	 nottled	× v	VSt		_	COLLUVIUM
	z	SPT 18,18,18 N=36		- -	2 0		red-brown, pale brow	n, gravel, fine grained,	, angular	× ≥				
		(0.95m		1.0			1.00m Hole Terminated at 1	00 m						
				- -			Tible Terrimitated at 1	.00 111						
				1. <u>5</u>										
				- -										
				2.0										
				-										
				2.5										
				-										
				3. <u>0</u>										
				-										
				3. <u>5</u>										
				-										
				4. <u>0</u> -										
				-										
				4. <u>5</u> -										
				-										
LEG Wate	END:			Notes, Sa			_			ery Soft	I	<2	 CS (kPa 25	D Dry
<u> </u>	(Dat	er Level e and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample t	ter tube sample for CBR testing al sample Soil Sample		F F St S VSt V	oft irm tiff 'ery Stiff lard		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	ta Ch	er Outllow anges radational or		Field Test		ample			1	riable V	Ve	ery Lo		Density Index <15%
	tra D	radational or ansitional str efinitive or di rata change	ata -	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth inter ometer test (UCS kPa)	val shown)		L ME D	Lo M	ose	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

Appendix C Laboratory Test Result Sheets



Client: RP Infrastructure Job No. RG\$32567.1-AO1

Project: Tamworth Health Service Redevelopment: Carpark B Works

Location: Dean Street, Tamworth

				TOTAL RECOVERA	ABLE HYDRO	CARBONS		P.	АН			Pesti	cides				HEAVY	METALS			
Location	DEPTH (m)	MATERIAL	C6-C10	C10-C16	C16-C34	C34-C40	TOTAL 10-40	Total	b-a-p	BTEX	PCB	ос	OP	As	Cd	Cr#	Cu	Pb	Ni	Zn	Hg
BH-CB1	0.4 - 0.5	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	7	15	<5	5	28	<0.1
BH-CB2	0.04 - 0.1	Pavement Gravel	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	3	7	<5	3	9	<0.1
BH-CB3	0.5 - 0.6	Colluvial Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	9	<1	13	25	6	10	60	<0.1
BH-CB4	0.5 - 0.6	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	14	27	8	10	53	<0.1
BH-CB5	0.4 - 0.5	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	12	22	7	9	42	<0.1
BH-CB6	0.04 - 0.1	Pavement Gravel	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	10	13	<5	10	13	<0.1
BH-CB7	0.5 - 0.6	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	11	20	7	7	40	<0.1
BH-CB8	0.5 - 0.6	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	10	19	8	9	42	<0.1
BH-CB9	0.45 - 0.5	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	7	<1	13	24	33	9	53	<0.1
BH-CB10	0.3 - 0.4	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	16	30	9	13	55	<0.1
BH-CB11	0.5 - 0.6	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	6	<1	17	22	9	9	44	<0.1
BH-CB12	0.05 - 0.1	Pavement Gravel	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	4	7	<5	4	11	<0.1
BH-CB13	0.3 - 0.4	Colluvial Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	8	12	5	5	24	<0.1
BH-CB14	0.05 - 0.1	Pavement Gravel	<10	<10	<100	130	130	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	8	14	11	7	42	<0.1
BH-CB15	0.1 - 0.2	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	11	21	6	8	44	<0.1
BH-CB16	0.05 - 0.1	Pavement Gravel	<10	<10	150	240	390	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	<2	5	<5	2	7	<0.1
BH-CB17	0.4 - 0.5	Residual Soil	<10	<10	<100	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	8	15	6	6	30	<0.1
BH-CB18	0.05 - 0.1	Pavement Gravel	<10	<10	<100	130	130	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	3	8	<5	3	10	<0.1
CB-D2 (duplicate of BH-CB13 0.3 – 0.4m)	0.3 - 0.4	Colluvial Soil	<10	<10	<50	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	<5	<1	12	18	9	8	38	<0.1
CB-D3 (duplicate of BH-CB17 0.4 – 0.5m)	0.4 - 0.5	Residual Soil	<10	<10	<50	<100	<50	<0.5	<0.5	<0.2	<0.1	<0.2	<0.2	5	<1	12	21	8	9	45	<0.1
CB-D2 RPD (%)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	40.0	57.1	46.2	45.2	0.0
CB-D3 RPD (%)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	33.3	28.6	40.0	40	0.0
				1					‡ 						 	†	†	 	 		İ
Health Based Soil inve	stigation Le	vel (HIL)*:						400	4	NL	1	10	10	500	150	500#	30000	1200	1200	60000	120
Health Screening Leve	el (HSL)**:		F1=70 (1-<2m)	F2=110 (0-<1m) F2=240 (1-<2m) F2=440 (2-<4m)																	
Ecological Investigation	on Level (Ell	-)***:	800	1000	3500	10000			0.7					100				1100			
Ecological Screening	Level (ESL)*	***:	215	170	1700	3300				50					Coarse	grained soil	in mg/kg				
			215	170	2500	6600				65					Fine g	rained soil ir	mg/kg				
Management Limits			700	1000	2500	10000									Coarse	grained soil	in mg/kg				
			800	1000	3500	10000									Fine g	rained soil ir	mg/kg				

Speciation testing confirmed only Chromium III present

LOR Limit of Reporting

No Limit available

NL

^{*} Health Based Investigation Levels for Reseidential B (NEPM 2013)
**Health Screening Level (F1 & F2) for Residential B land use and coarse grained soil (sand) (NEPM 2013)
**Ecological Investigation Level - for Residential B land use
*** Ecological Screening Level for Residential B land use and fine grained soil

Client:
Job No.
Project:
Location:

RP Infrastructure RGS32567.1-AO1 Tamworth Health Dean Street, Tamv

		ASBESTOS
DEPTH (m)	MATERIAL	Present
0.5 - 0.6	Residual Soil	No
0.5 - 0.6	Residual Soil	No
0.5 - 0.6	Colluvial Soil	No
0.04 - 0.1	Pavement Gravel	No
0.5 - 0.95	Residual Soil	No
0.5 - 0.6	Residual Soil	No
0.06 - 0.1	Pavement Gravel	No
0.5 - 0.6	Residual Soil	No
0.5 - 0.6	Residual Soil	No
0.3 - 0.4	Residual Soil	No
0.5 - 0.6	Residual Soil	No
0.5 - 0.6	Residual Soil	No
0.3 - 0.4	Colluvial Soil	No
0.5 - 0.6	Residual Soil	No
0.1 - 0.2	Residual Soil	No
0.05 - 0.1	Pavement Gravel	No
0.5 - 0.6	Residual Soil	No
0.5 - 0.6	Residual Soil	No
	0.5 - 0.6 0.5 - 0.6 0.5 - 0.6 0.04 - 0.1 0.5 - 0.95 0.5 - 0.6 0.06 - 0.1 0.5 - 0.6 0.3 - 0.4 0.5 - 0.6 0.3 - 0.4 0.5 - 0.6 0.1 - 0.2 0.05 - 0.1 0.5 - 0.6	0.5 - 0.6 Residual Soil 0.5 - 0.6 Residual Soil 0.5 - 0.6 Colluvial Soil 0.04 - 0.1 Pavement Gravel 0.5 - 0.95 Residual Soil 0.5 - 0.6 Residual Soil

CERTIFICATE OF ANALYSIS

Work Order : ES2229960

: REGIONAL GEOTECHNICAL SOLUTION

Contact : MR ADAM HOLZHAUSER

Address : Unit 14 25-27 Hurley Drive

COFFS HARBOUR NSW, AUSTRALIA 2450

Telephone : +61 02 6553 5641

Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Order number C-O-C number

Client

Sampler

Site : Tamworth Hospital

Quote number : EN/222 No. of samples received : 38 No. of samples analysed : 38

Page : 1 of 23

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 22-Aug-2022 16:27 **Date Analysis Commenced** : 24-Aug-2022

Issue Date : 29-Aug-2022 15:02

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
-------------	----------	------------------------

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Newcastle - Asbestos, Mayfield West, NSW Jake Spooner Laboratory Technician

Page : 2 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB1 0.4-0.5	BH-CB2 0.04-0.1	BH-CB3 0.5-0.6	BH-CB4 0.5-0.6	BH-CB5 0.4-0.5
(Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-001	ES2229960-002	ES2229960-003	ES2229960-004	ES2229960-005
Para Para Para Para Para Para Para Para				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	105-110°C)							•
Moisture Content		1.0	%	10.1	1.9	15.5	14.6	7.6
EG005(ED093)T: Total Metals by ICF	P-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	9	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	7	3	13	14	12
Copper	7440-50-8	5	mg/kg	15	7	25	27	22
Lead	7439-92-1	5	mg/kg	<5	<5	6	8	7
Nickel	7440-02-0	2	mg/kg	5	3	10	10	9
Zinc	7440-66-6	5	mg/kg	28	9	60	53	42
EG035T: Total Recoverable Mercur	y by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	: (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 4 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	BH-CB1 0.4-0.5	BH-CB2 0.04-0.1	BH-CB3 0.5-0.6	BH-CB4 0.5-0.6	BH-CB5 0.4-0.5
(Matrix: SOIL)		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
0	0.4.0.4/	LOR	Unit	-	-	-	-	-
Compound	CAS Number	LUK	Onn	ES2229960-001	ES2229960-002	ES2229960-003	ES2229960-004	ES2229960-005
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	<u> </u>							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom							3.33	
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene		0.5		<0.5	<0.5	<0.5	<0.5	<0.5
rylelle	129-00-0	0.5	mg/kg	\U. U	\0.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\u0.5	\0.5

Page : 5 of 23
Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB1 0.4-0.5	BH-CB2 0.04-0.1	BH-CB3 0.5-0.6	BH-CB4 0.5-0.6	BH-CB5 0.4-0.5
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-001	ES2229960-002	ES2229960-003	ES2229960-004	ES2229960-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic F	Hydrocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 6 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB1 0.4-0.5	BH-CB2 0.04-0.1	BH-CB3 0.5-0.6	BH-CB4 0.5-0.6	BH-CB5 0.4-0.5
		Sampli	ing date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-001	ES2229960-002	ES2229960-003	ES2229960-004	ES2229960-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	116	91.5	89.6	98.0	92.0
EP068S: Organochlorine Pesticide S	urrogate							
Dibromo-DDE	21655-73-2	0.05	%	130	93.1	89.4	100	93.9
EP068T: Organophosphorus Pesticio	de Surrogate							
DEF	78-48-8	0.05	%	136	100	101	93.8	94.0
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	0.5	%	74.2	75.1	74.1	76.4	73.9
2-Chlorophenol-D4	93951-73-6	0.5	%	80.8	82.5	81.8	89.5	87.4
2.4.6-Tribromophenol	118-79-6	0.5	%	53.7	51.2	58.5	70.7	67.7
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	84.3	87.5	85.7	102	97.5
Anthracene-d10	1719-06-8	0.5	%	87.8	91.2	89.9	90.5	86.5
4-Terphenyl-d14	1718-51-0	0.5	%	86.2	87.4	86.7	92.5	89.4
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	91.4	104	94.1	97.2	102
Toluene-D8	2037-26-5	0.2	%	97.0	104	99.1	99.0	107
4-Bromofluorobenzene	460-00-4	0.2	%	91.6	95.3	92.7	92.4	97.4

Page : 7 of 23
Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB6 0.04-0.1	BH-CB7 0.5-00.6	BH-CB8 0.5-0.6	BH-CB9 0.45-0.5	BH-CB10 0.3-0.4
		Samplii	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-006	ES2229960-007	ES2229960-008	ES2229960-009	ES2229960-010
Para I				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							'
Moisture Content		1.0	%	4.0	10.7	8.7	12.5	16.8
EG005(ED093)T: Total Metals by ICF	P-AES							
Arsenic	7440-38-2	5	mg/kg	<5	5	<5	7	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	10	11	10	13	16
Copper	7440-50-8	5	mg/kg	13	20	19	24	30
Lead	7439-92-1	5	mg/kg	<5	7	8	33	9
Nickel	7440-02-0	2	mg/kg	10	7	9	9	13
Zinc	7440-66-6	5	mg/kg	13	40	42	53	55
EG035T: Total Recoverable Mercury	v bv FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (I	PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 8 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB6 0.04-0.1	BH-CB7 0.5-00.6	BH-CB8 0.5-0.6	BH-CB9 0.45-0.5	BH-CB10 0.3-0.4
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-006	ES2229960-007	ES2229960-008	ES2229960-009	ES2229960-010
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	ides (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 9 of 23
Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB6 0.04-0.1	BH-CB7 0.5-00.6	BH-CB8 0.5-0.6	BH-CB9 0.45-0.5	BH-CB10 0.3-0.4
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-006	ES2229960-007	ES2229960-008	ES2229960-009	ES2229960-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 10 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB6 0.04-0.1	BH-CB7 0.5-00.6	BH-CB8 0.5-0.6	BH-CB9 0.45-0.5	BH-CB10 0.3-0.4
		Sampli	ing date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-006	ES2229960-007	ES2229960-008	ES2229960-009	ES2229960-010
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	99.5	90.9	99.4	94.6	85.9
EP068S: Organochlorine Pesticio	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	104	91.7	102	98.4	85.2
EP068T: Organophosphorus Pes	ticide Surrogate							
DEF	78-48-8	0.05	%	108	93.1	101	99.7	86.5
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	74.2	75.5	78.8	74.6	76.2
2-Chlorophenol-D4	93951-73-6	0.5	%	89.2	89.8	92.8	89.1	89.4
2.4.6-Tribromophenol	118-79-6	0.5	%	42.1	69.1	68.2	70.4	70.3
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	98.7	97.8	104	97.8	99.6
Anthracene-d10	1719-06-8	0.5	%	87.2	86.9	93.5	86.6	88.8
4-Terphenyl-d14	1718-51-0	0.5	%	89.3	89.2	95.0	88.6	90.1
EP080S: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	101	101	97.2	100	99.9
Toluene-D8	2037-26-5	0.2	%	101	106	96.6	103	102
4-Bromofluorobenzene	460-00-4	0.2	%	95.8	95.9	90.5	91.6	92.7

Page : 11 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB11 0.5-0.6	BH-CB12 0.05-0.1	BH-CB13 0.3-0.4	BH-CB14 0.5-0.1	BH-CB15 0.1-0.2
<u>, </u>		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-011	ES2229960-012	ES2229960-013	ES2229960-014	ES2229960-015
·				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							'
Moisture Content		1.0	%	10.0	2.9	14.8	6.0	15.9
EG005(ED093)T: Total Metals by ICF	P-AES							
Arsenic	7440-38-2	5	mg/kg	6	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	17	4	8	8	11
Copper	7440-50-8	5	mg/kg	22	7	12	14	21
Lead	7439-92-1	5	mg/kg	9	<5	5	11	6
Nickel	7440-02-0	2	mg/kg	9	4	5	7	8
Zinc	7440-66-6	5	mg/kg	44	11	24	42	44
EG035T: Total Recoverable Mercur	v by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 12 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL			Sample ID	BH-CB11 0.5-0.6	BH-CB12 0.05-0.1	BH-CB13 0.3-0.4	BH-CB14 0.5-0.1	BH-CB15 0.1-0.2
(Matrix: SOIL)		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Commenced	CAC Mumban	LOR	Unit	ES2229960-011	ES2229960-012	ES2229960-013	ES2229960-014	ES2229960-015
Compound	CAS Number	LON	Oim	Result	Result	Result	Result	Result
	. (00)			Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	<u> </u>	0.0		40.0	40.0	40.0	40.0	<0.2
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2 <0.05	<0.2	<0.2 <0.05	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	1 11	<0.05	1 1 1	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	<u> </u>							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 13 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB11 0.5-0.6	BH-CB12 0.05-0.1	BH-CB13 0.3-0.4	BH-CB14 0.5-0.1	BH-CB15 0.1-0.2
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-011	ES2229960-012	ES2229960-013	ES2229960-014	ES2229960-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbor	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	130	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	130	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 14 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB11 0.5-0.6	BH-CB12 0.05-0.1	BH-CB13 0.3-0.4	BH-CB14 0.5-0.1	BH-CB15 0.1-0.2
		Sampli	ing date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-011	ES2229960-012	ES2229960-013	ES2229960-014	ES2229960-015
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	90.4	94.8	97.1	89.0	90.3
EP068S: Organochlorine Pesticid	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	91.1	102	100	100.0	94.3
EP068T: Organophosphorus Pest	ticide Surrogate							
DEF	78-48-8	0.05	%	90.3	105	102	101	93.7
EP075(SIM)S: Phenolic Compoun	d Surrogates							
Phenol-d6	13127-88-3	0.5	%	78.2	80.8	76.4	74.5	74.4
2-Chlorophenol-D4	93951-73-6	0.5	%	93.0	96.3	91.1	87.8	88.6
2.4.6-Tribromophenol	118-79-6	0.5	%	72.4	68.4	74.0	64.4	74.3
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103	107	100	97.1	98.0
Anthracene-d10	1719-06-8	0.5	%	91.0	94.3	89.7	86.1	88.2
4-Terphenyl-d14	1718-51-0	0.5	%	92.8	95.4	90.9	88.2	90.0
EP080S: TPH(V)/BTEX Surrogates	;							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	98.2	98.4	91.1	103	97.7
Toluene-D8	2037-26-5	0.2	%	100	99.2	90.7	106	101
4-Bromofluorobenzene	460-00-4	0.2	%	91.8	88.5	83.9	92.8	88.7

Page : 15 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB16 0.05-0.1	BH-CB17 0.4-0.5	BH-CB18 0.05-0.1	CB-D2	CB-D3
,		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-016	ES2229960-017	ES2229960-018	ES2229960-019	ES2229960-020
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		1.0	%	2.7	10.0	3.3	14.0	15.4
EG005(ED093)T: Total Metals by ICF	P-AFS							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	8	3	12	12
Copper	7440-50-8	5	mg/kg	5	15	8	18	21
Lead	7439-92-1	5	mg/kg	<5	6	<5	9	8
Nickel	7440-02-0	2	mg/kg	2	6	3	8	9
Zinc	7440-66-6	5	mg/kg	7	30	10	38	45
EG035T: Total Recoverable Mercur								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (3 3					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides			mg/ng					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 16 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB16 0.05-0.1	BH-CB17 0.4-0.5	BH-CB18 0.05-0.1	CB-D2	CB-D3
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-016	ES2229960-017	ES2229960-018	ES2229960-019	ES2229960-020
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestic	ides (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pe	esticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Arom	natic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 17 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB16 0.05-0.1	BH-CB17 0.4-0.5	BH-CB18 0.05-0.1	CB-D2	CB-D3
		Samplii	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-016	ES2229960-017	ES2229960-018	ES2229960-019	ES2229960-020
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbor	ıs	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	180	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	180	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	150	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	240	<100	130	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	390	<50	130	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN						·		
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 18 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB16 0.05-0.1	BH-CB17 0.4-0.5	BH-CB18 0.05-0.1	CB-D2	CB-D3
		Sampli	ing date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-016	ES2229960-017	ES2229960-018	ES2229960-019	ES2229960-020
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	97.1	83.0	99.1	81.6	79.0
EP068S: Organochlorine Pesticid	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	104	99.4	119	96.0	94.6
EP068T: Organophosphorus Pes	ticide Surrogate							
DEF	78-48-8	0.05	%	100.0	92.2	111	86.9	79.0
EP075(SIM)S: Phenolic Compoun	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	75.4	76.4	82.2	75.2	72.5
2-Chlorophenol-D4	93951-73-6	0.5	%	90.5	91.9	98.6	90.0	85.1
2.4.6-Tribromophenol	118-79-6	0.5	%	57.9	78.8	69.4	75.4	71.1
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	101	99.8	108	98.1	94.0
Anthracene-d10	1719-06-8	0.5	%	90.9	91.0	97.3	88.9	85.1
4-Terphenyl-d14	1718-51-0	0.5	%	91.9	93.2	99.3	90.2	85.8
EP080S: TPH(V)/BTEX Surrogates	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	110	99.7	105	93.2	98.3
Toluene-D8	2037-26-5	0.2	%	115	105	108	96.1	104
4-Bromofluorobenzene	460-00-4	0.2	%	99.1	93.9	96.8	87.4	92.0

Page : 19 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)					BH-CB2 0.5-0.6	BH-CB3 0.5-0.6	BH-CB4 0.04-0.1	BH-CB5 0.5-0.95
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-021	ES2229960-022	ES2229960-023	ES2229960-024	ES2229960-025
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identificat	tion of Asbestos in Soils	•						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	140	110	79.5	235	168
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 20 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB6 0.5-0.6	BH-CB7 0.06-0.1	BH-CB8 0.5-0.6	BH-CB9 0.5-0.6	BH-CB10 0.3-0.4
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-026	ES2229960-027	ES2229960-028	ES2229960-029	ES2229960-030
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identificat	ion of Asbestos in Soils	•						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	85.4	259	132	167	138
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 21 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB11 0.5-0.6	BH-CB12 0.5-0.6	BH-CB13 0.3-0.4	BH-CB14 0.5-0.6	BH-CB15 0.1-0.2
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00
Compound	CAS Number	LOR	Unit	ES2229960-031	ES2229960-032	ES2229960-033	ES2229960-034	ES2229960-035
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification	on of Asbestos in Soils	•						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	No	No
Organic Fibre		0.1	g/kg	No	No	No	No	No
Sample weight (dry)		0.01	g	68.4	62.2	119	143	179
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER	J.SPOONER

Page : 22 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH-CB16 0.05-0.1	BH-CB17 0.5-0.6	BH-CB18 0.5-0.6	
		Sampli	ng date / time	22-Aug-2022 00:00	22-Aug-2022 00:00	22-Aug-2022 00:00	
Compound	CAS Number	LOR	Unit	ES2229960-036	ES2229960-037	ES2229960-038	
				Result	Result	Result	
EA200: AS 4964 - 2004 Identificati	on of Asbestos in Soils	;					
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No	
Asbestos Type	1332-21-4	-		-	-	-	
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	
Organic Fibre		0.1	g/kg	No	No	No	
Sample weight (dry)		0.01	g	367	70.1	221	
APPROVED IDENTIFIER:		-		J.SPOONER	J.SPOONER	J.SPOONER	

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Oub-Iviatiix. SOIL		
Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	s in Soils	
EA200: Description	BH-CB1 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB2 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB3 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB4 0.04-0.1 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB5 0.5-0.95 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB6 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB7 0.06-0.1 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB8 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB9 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB10 0.3-0.4 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB11 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB12 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB13 0.3-0.4 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB14 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB15 0.1-0.2 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB16 0.05-0.1 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB17 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.
EA200: Description	BH-CB18 0.5-0.6 - 22-Aug-2022 00:00	Soil sample.

Page : 23 of 23 Work Order : ES2229960

Client : REGIONAL GEOTECHNICAL SOLUTION
Project : RGS32576.1 PROPOSED CARPARK B Upgrades

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)	
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide S	Surrogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pestici	de Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

Appendix D Letter from Dr David Tully CEnvP SC

Contaminated Land Solutions

23 February 2023

Ref: CLS0177.L07

Regional Geotechnical Solutions Pty Ltd Unit 4 25-27 Hurley Drive Coffs Harbour NSW 2450

For the attention of Louis Davidson

Dear Louis,

RE: Report Review Stage 1 & Stage 2 Site Contamination Assessment –Tamworth Health Service Redevelopment: Carpark B Works, Dean Street, Tamworth

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions report entitled "Stage 1 & Stage 2 Site Contamination Assessment – *Tamworth Health Service Redevelopment: Carpark B Works, Dean Street, Tamworth*" (Ref: RGS32576.1-AO Rev.1), dated 22 February 2023 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via david.tully@contaminatedlandsolutions.com.au. Specific queries regarding the content of the report should be addressed to Louis Davidson at Regional Geotechnical Solutions.

For and on behalf of

Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC

Director

Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152 0410 012 292